# DIGITAL FUNDAMENTALS 

Ninth Edition

Thomas L. Floyd

## PEARSON

Prentice
Hall

Upper Saddle River, New Jersey
Columbus, Ohio


Copyright © 2006 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.
Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall ${ }^{\text {TM }}$ is a trademark of Pearson Education, Inc.
Pearson ${ }^{\circledR}$ is a registered trademark of Pearson plc
Prentice Hall® is a registered trademark of Pearson Education, Inc.

Instructors of classes using Floyd, Digital Fundamentals, Ninth Edition, may reproduce material from the instructor's resource manual for classroom use.

## PEARSON

Prentice

## CONTENTS

PART 1: PROBLEM SOLUTIONS .....  1
CHAPTER 1 Digital Concepts ..... 2
CHAPTER 2 Number Systems, Operations, and Codes ..... 7
CHAPTER 3 Logic Gates ..... 24
CHAPTER 4 Boolean Algebra and Logic Simplification ..... 35
CHAPTER 5 Combinational Logic Analysis ..... 60
CHAPTER 6 Functions of Combinational Logic ..... 92
CHAPTER 7 Latches, Flip-Flops, and Timers ..... 111
CHAPTER 8 Counters ..... 124
CHAPTER 9 Shift Registers ..... 152
CHAPTER 10 Memory and Storage ..... 168
CHAPTER 11 Programmable Logic and Software ..... 178
CHAPTER 12 Introduction to Computers ..... 188
CHAPTER 13 Introduction to Digital Signal Processing ..... 194
CHAPTER 14 Integrated Circuit Technologies ..... 202
PART 2: DIGITAL SYSTEM APPLICATION SOLUTIONS ..... 209
CHAPTER 4 ..... 210
CHAPTER 5 ..... 213
CHAPTER 6 ..... 215
CHAPTER 7 ..... 217
CHAPTER 8 ..... 218
CHAPTER 9 ..... 220
CHAPTER 10 ..... 222
CHAPTER 11 ..... 224
PART 3: OVERVIEW OF IEEE STD.91-1984 ..... 227
PART 4: LABORATORY SOLUTIONS FOR EXPERIMENTS IN DIGITAL FUNDAMENTALS by David Buchla ..... 253

To access supplementary materials online, instructors need to request an instructor access code. Go to www.prenhall.com, click the Instructor Resource Center link, and then click Register Today for an instructor access code. Within 48 hours after registering you will receive a confirming e-mail including an instructor access code. Once you have received your code, go the site and log on for full instructions on downloading the materials you wish to use.

NOTE: For access to hidden faults in Multisim circuits, the password is book.


CHAPTER 1
DIGITAL CONCEPTS

## Section 1-1 Digital and Analog Quantities

1. Digital data can be transmitted and stored more efficiently and reliably than analog data. Also, digital circuits are simpler to implement and there is a greater immunity to noisy environments.
2. Pressure is an analog quantity.

Section 1-2 Binary Digits, Logic Levels, and Digital Waveforms
3. HIGH $=1 ;$ LOW $=0$. See Figure 1-1.

4. A 1 is a HIGH and a 0 is a LOW:
(a) HIGH, LOW, HIGH, HIGH, HIGH, LOW, HIGH
(b) HIGH, HIGH, HIGH, LOW, HIGH, LOW, LOW, HIGH

Chapter 1
5. See Figure 1-2.


FIGURE 1-2
6. $T=4 \mathrm{~ms}$. See Figure 1-3.


FIGURE 1-3
7. $f=\frac{1}{T}=\frac{1}{4 \mathrm{~ms}}=0.25 \mathrm{kHz}=250 \mathrm{~Hz}$
8. The waveform in Figure $1-61$ is periodic because it repeats at a fixed interval.
9. $\quad t_{\mathrm{w}}=2 \mathrm{~ms} ; T=4 \mathrm{~ms}$
$\%$ duty cycle $=\left(\frac{t_{\mathrm{W}}}{T}\right) 100=\left(\frac{2 \mathrm{~ms}}{4 \mathrm{~ms}}\right) 100=50 \%$
10. See Figure 1-4.


FIGURE 1-4
11. Each bit time $=1 \mu \mathrm{~s}$

FIGUR
Serial transfer time $=(8$ bits $)(1 \mu \mathrm{~s} / \mathrm{bit})=8 \mu \mathrm{~s}$
Parallel transfer time $=1$ bit time $=1 \mu \mathrm{~s}$
Section 1-3 Basic Logic Operations

## Chapter 1

12. An AND gate produces a HIGH output only when all of its inputs are HIGH.
13. AND gate. See Figure 1-5.


FIGURE 1-5
14. An OR gate produces a HIGH output when either or both inputs are HIGH. An exclusive-OR gate produces a HIGH if one input is HIGH and the other LOW.

## Section 1-4 Overview of Basic Logic Functions

15. See Figure 1-6.

16. $T=\frac{1}{10 \mathrm{kHz}}=100 \mu \mathrm{~s}$

Pulses counted $=\frac{100 \mathrm{~ms}}{100 \mu \mathrm{~s}}=1000$
17. See Figure 1-7.


FIGURE 1-7

## Chapter 1

## Section 1-5 Fixed-Function Integrated Circuits

18. Circuits with complexities of from 100 to 10,000 equivalent gates are classified as large scale integration (LSI).
19. The pins of an SMT are soldered to the pads on the surface of a pc board, whereas the pins of a DIP feed through and are soldered to the opposite side. Pin spacing on SMTs is less than on DIPs and therefore SMT packages are physically smaller and require less surface area on a pc board.
20. See Figure 1-8.


## Section 1-6 Introduction to Programmable Logic

21. The following do not describe PLDs: ABEL, CUPL
22. SPLD: Simple Programmable Logic Device CPLD: Complex Programmable Logic Device HDL: Hardware Description Language FPGA: Field-Programmable Gate Array GAL: Generic Array Logic
23. (a) Design entry: The step in a programmable logic design flow where a description of the circuit is entered in either schematic (graphic) form or in text form using an HDL.
(b) Simulation: The step in a design flow where the entered design is simulated based on defined input waveforms.
(c) Compilation: A program process that controls the design flow process and translates a design source code to object code for testing and downloading.
(d) Download: The process in which the design is transferred from software to hardware.
24. Place and route or fitting is the process where the logic structures described by the netlist are mapped into the actual structure of the specific target device. This results in an output called a bitstream.

## Section 1-7 Test and Measurement Instruments

25. Amplitude $=$ top of pulse minus base line $V=8 \mathrm{~V}-1 \mathrm{~V}=7 \mathrm{~V}$
26. A flashing probe lamp indicates a continuous sequence of pulses (pulse train).

## Digital System Application

27. A system is a combination of logic elements and functions arranged and interconnected to perform specified tasks.
28. The binary number representing the total number of tablets is converted from parallel to serial form by the multiplexer and sent, one bit at a time, to the remote location where the demultiplexer converts the serial number back to parallel form for decoding and display.
29. A new number of tablets per bottle can be entered with the keypad.

CHAPTER 2
NUMBER SYSTEMS, OPERATIONS, AND CODES

## Section 2-1 Decimal Numbers

1. 

(a) $1386=1 \times 10^{3}+3 \times 10^{2}+8 \times 10^{1}+6 \times 10^{0}$
$=1 \times 1000+3 \times 100+8 \times 10+6 \times 1$
The digit 6 has a weight of $10^{\circ}=1$
(b) $54,692=5 \times 10^{4}+4 \times 10^{3}+6 \times 10^{2}+9 \times 10^{1}+2 \times 10^{0}$

$$
=5 \times 10,000+4 \times 1000+6 \times 100+9 \times 10+2 \times 1
$$

The digit 6 has a weight of $10^{2}=100$
(c) $671,920=6 \times 10^{5}+7 \times 10^{4}+1 \times 10^{3}+9 \times 10^{2}+2 \times 10^{1}+0 \times$
$=6 \times 100,000+7 \times 10,000+1 \times 1000+9 \times 100+2 \times$
$10+0 \times 1$
The digit 6 has a weight of $10^{5}=100,000$
2.
(a) $10=10^{1}$
(b) $100=10^{2}$
(c) $10,000=10^{4}$
(d) $1,000,000=10^{6}$
3. (a) $471=4 \times 10^{2}+7 \times 10^{1}+1 \times 10^{0}$

$$
=4 \times 100+7 \times 10+1 \times 1
$$

$$
=400+70+1
$$

(b) $9,356=9 \times 10^{3}+3 \times 10^{2}+5 \times 10^{1}+6 \times 10^{0}$
$=9 \times 1000+3 \times 100+5 \times 10+6 \times 1$
$=9,000+300+50+6$
(c) $125,000=1 \times 10^{5}+2 \times 10^{4}+5 \times 10^{3}$
$=1 \times 100,000+2 \times 10,000+5 \times 1000$
$=100,000+20,000+5,000$
4. The highest four-digit decimal number is 9999.

## Section 2-2 Binary Numbers

5. 

| (a) | $11=1 \times 2^{1}+1 \times 2^{0}=2+1=3$ |
| :--- | :--- |
| (b) | $100=1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=4$ |
| (c) | $111=1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=4+2+1=7$ |
| (d) | $1000=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=8$ |
| (e) | $1001=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=8+1=9$ |
| (f) | $1100=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=8+4=12$ |
| (g) | $1011=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=8+2+1=11$ |
| (h) | $1111=1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=8+4+2+1=15$ |

## http://ebook29.blogspot.com

6. (a) $1110=1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}=8+4+2=14$
(b) $1010=1 \times 2^{3}+1 \times 2^{1}=8+2=10$
(c) $11100=1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}=16+8+4=28$
(d) $10000=1 \times 2^{4}=16$
(e) $\quad 10101=1 \times 2^{4}+1 \times 2^{2}+1 \times 2^{0}=16+4+1=21$
(f) $\quad 11101=1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{0}=16+8+4+1=29$
(g) $\quad 10111=1 \times 2^{4}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=16+4+2+1=23$
(h) $11111=1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=16+8+4+$
$2+1=31$
7. (a) $110011.11=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{1}+1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}$ $=32+16+2+1+0.5+0.25=51.75$
(b) $101010.01=1 \times 2^{5}+1 \times 2^{3}+1 \times 2^{1}+1 \times 2^{-2}=32+8+2+$
0.25
$=42.25$
(c) $1000001.111=1 \times 2^{6}+1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}$
$=64+1+0.5+0.25+0.125=65.875$
(d) $1111000.101=1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{-1}+1 \times 2^{-3}$
$=64+32+16+8+0.5+0.125=120.625$
(e) $1011100.10101=1 \times 2^{6}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{-1}+1 \times$ $2^{-3}+1 \times 2^{-5}$

$$
=64+16+8+4+0.5+0.125+0.03125
$$

$$
=92.65625
$$

(f) $\quad 1110001.0001=1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{0}+1 \times 2^{-4}$
$=64+32+16+1+0.0625=113.0625$
(g) $1011010.1010=1 \times 2^{6}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{1}+1 \times 2^{-1}+1 \times$ $2^{-3}$
$=64+16+8+2+0.5+0.125=90.625$
(h) $1111111.11111=1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+1 \times$
$2^{1}$

$$
\begin{aligned}
2^{-5} & +1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}+1 \times 2^{-4}+1 \times \\
& =64+32+16+8+4+2+1+0.5+0.25+0.125 \\
+0.0625 & +0.03125 \\
& =127.96875
\end{aligned}
$$

8. 

| (a) | $2^{2}-1=3$ | (b) | $2^{3}-1=7$ |
| :--- | :--- | :--- | :--- |
| (c) | $2^{4}-1=15$ | (d) | $2^{5}-1=31$ |
| (e) | $2^{6}-1=63$ | (f) | $2^{7}-1=127$ |
| (g) | $2^{8}-1=255$ | (h) | $2^{9}-1=511$ |
| (i) | $2^{10}-1=1023$ | (j) | $2^{11}-1=2047$ |

9. (a) $\left(2^{4}-1\right)<17<\left(2^{5}-1\right) ; 5$ bits
(b) $\quad\left(2^{5}-1\right)<35<\left(2^{6}-1\right) ; 6$ bits
(c) $\left(2^{5}-1\right)<49<\left(2^{6}-1\right) ; 6$ bits
(d) $\left(2^{6}-1\right)<68<\left(2^{7}-1\right) ; 7$ bits
(e) $\left(2^{6}-1\right)<81<\left(2^{7}-1\right) ; 7$ bits
(f) $\quad\left(2^{6}-1\right)<114<\left(2^{7}-1\right) ; 7$ bits
(g) $\quad\left(2^{7}-1\right)<132<\left(2^{8}-1\right) ; 8$ bits
(h) $\quad\left(2^{7}-1\right)<205<\left(2^{8}-1\right)$; 8 bits

## http://ebook29.blogspot.com

10. (a) 0 through 7:
000, 001, 010, 011, 100, 101, 110, 111
(b) 8 through 15:

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111
(c) 16 through 31:

10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111, 11000,
11001, 11010,
11011, 11100, 11101, 11110, 11111
(d) 32 through 63:

100000, 100001, 100010, 100011, 100100, 100101, 100110, 100111, 10100, 101001, 101010, 101011, 101100, 101101, 101110, 101111, 110000, 110001, 110010, 110011,

110100, 110101, 110110, 110111, 111000, 111001, 111010, 111011, 111100, 111101,

111110, 111111
(e) 64 through 75:

1000000, 1000001, 1000010, 1000011, 1000100, 1000101, 1000110,
1000111,
1001000, 1001001, 1001010, 1001011

## Section 2-3 Decimal-to-Binary Conversion

11. (a) $10=8+2=2^{3}+2^{1}=1010$
(b) $17=16+1=2^{4}+2^{0}=10001$
(c) $24=16+8=2^{4}+2^{3}=11000$
(d) $48=32+16=2^{5}+2^{4}=110000$
(e) $61=32+16+8+4+1=2^{5}+2^{4}+2^{3}+2^{2}+2^{0}=111101$
(f) $93=64+16+8+4+1=2^{6}+2^{4}+2^{3}+2^{2}+2^{0}=1011101$
(g) $125=64+32+16+8+4+1=2^{6}+2^{5}+2^{4}+2^{3}+2^{2}+2^{0}=$
1111101
(h) $186=128+32+16+8+2=2^{7}+2^{5}+2^{4}+2^{3}+2^{1}=10111010$
( 12.
(a) $0.32 \cong 0.00+0.25+0.0625+0.0+0.0+0.0078125=0.0101001$
(b) $0.246 \cong 0.0+0.0+0.125+0.0625+0.03125+0.015625=$
0.001111
(c) $0.0981 \cong 0.0+0.0+0.0+0.0625+0.03125+0.0+0.0+$
0.00390625
12. (a) $\frac{15}{2}=7, R=\quad \frac{2}{2}=1, \quad R \quad$ (b) $\frac{21}{2}=10, \quad R=$

1 ( LSB)

$$
\frac{7}{2}=3, \quad R=
$$

1
$=0$
$\frac{1}{2}=0$,
$=1$ (MSB)

$$
\frac{3}{2}=1, \quad R=
$$

1

1 (MSB)
(d) $\frac{34}{2}=17, \quad R=0$
(LSB)

$$
\frac{17}{2}=8, \quad R=
$$

1

$$
\frac{8}{2}=4, \quad R=
$$

0

$$
\frac{4}{2}=2, \quad R=
$$

0

$$
\frac{2}{2}=1, \quad R=
$$

0

$$
\frac{1}{2}=0, \quad R=1
$$

(MSB)
(g) $\frac{65}{2}=32, \quad R=1$
(LSB)

$$
\begin{aligned}
& \frac{32}{2}=16, \quad R=0 \\
& \frac{16}{2}=8, \quad R=
\end{aligned}
$$

0

0

$$
\begin{array}{ll}
\frac{8}{2}=4, & R= \\
\frac{4}{2}=2, & R=
\end{array}
$$

1 (LSB)
$\frac{10}{2}=5, \quad R=$
0

$$
\begin{array}{ll}
\frac{5}{2}=2, & R=1 \\
\frac{2}{2}=1, & R=0 \\
\frac{1}{2}=0, & R=1
\end{array}
$$

(MSB)
(e) $\frac{40}{2}=20, \quad R=$

0 (LSB)

$$
\frac{20}{2}=10, \quad R=
$$

0

$$
\begin{aligned}
& \frac{10}{2}=5, R=0 \\
& \frac{5}{2}=2, \quad R=
\end{aligned}
$$

1
$\frac{2}{2}=1, \quad R=0$
$\frac{1}{2}=0, \quad R=$
1 (MSB)
(h) $\frac{73}{2}=36, \quad R=$

1 (LSB)

$$
\begin{array}{ll}
\frac{36}{2}=18, & R= \\
\frac{18}{2}=9, & R=
\end{array}
$$

0

0

$$
\begin{aligned}
& \frac{9}{2}=4, \quad R=1 \\
& \frac{4}{2}=2, \quad R=0 \\
& \frac{2}{2}=1, \quad R=0
\end{aligned}
$$

http://ebook29.blogspot.com

$$
\begin{align*}
& \frac{1}{2}=0, \quad R=1 \quad(\mathrm{MSB}) \\
& \text { (c) } \frac{28}{2}=14, \quad R=0 \\
& \text { (LSB) } \\
& \frac{14}{2}=7, \quad R=0 \\
& \frac{7}{2}=3, \quad R=1 \\
& \frac{3}{2}=1, \quad R=1 \\
& \frac{1}{2}=0, \quad R=1 \quad(\mathrm{MSB}) \\
& \text { (f) } \frac{59}{2}=29, \quad R=1 \\
& \frac{29}{2}=14, \quad R=1  \tag{LSB}\\
& \frac{14}{2}=7, R=0 \\
& \frac{7}{2}=3, \quad R=1 \\
& \frac{3}{2}=1, \quad R=1 \\
& \frac{1}{2}=0, \quad R=1 \quad \text { (MSB) }
\end{align*}
$$


(b) $0.347 \times 2=$ $0.694 \times 2=$
$0.388 \times 2=$
$0.776 \times 2=$
$0.552 \times 2=$
$0.104 \times 2=$
$0.208 \times 2=$
continue if
0.0101100

```
(c) 0.9028 < 2 = 1.8056 1 (MSB)
    0.8056 < 2 = 1.6112 1
    0.6112 x 2 = 1.2224 1
    0.2224 x 2 = 0.4448 0
    0.4448 > 2 = 0.8896 0
    0.8896 x 2 = 1.7792 1
        0.7792 x 2 = 1.5584 1
        continue if more accuracy is desired
        0.1110011
```


## Section 2-4 Binary Arithmetic

15. (a) 11
$\begin{array}{r}+01 \\ \hline 100\end{array}$
(d) 111
$\begin{array}{r}+110 \\ \hline 1101\end{array}$
(b) 10
$\begin{array}{r}+10 \\ \hline 100\end{array}$
(e) 1001
$\begin{array}{r}+0101 \\ \hline 1110\end{array}$
(b) $\begin{array}{r}101 \\ -100 \\ \hline 001\end{array}$
(e) 1100
$\begin{array}{r}-1001 \\ \hline 0011\end{array}$
(c) $\begin{array}{r}101 \\ +011 \\ \hline 1000\end{array}$
(f) 1101
$\begin{array}{r}+1011 \\ \hline 11000\end{array}$
(c) 110
-101
001
(f) 11010
$\begin{array}{r}-10111 \\ \hline 00011\end{array}$
16. (a) 11
$\times 11$
$\frac{11}{1001}$
(b) 100
(c) 111
$\begin{array}{r}\times 101 \\ \hline 111\end{array}$
(d) 1001 $\begin{array}{r}\times 110 \\ \hline 0000\end{array}$
000
1001
111
1001
$\overline{100011}$
$\overline{110110}$

(f) 1110 | $\times 1101$ |
| ---: |
| 1110 |
| 0000 | 1110

1110
$\overline{10110110}$
18. (a) $\frac{100}{10}=010 \quad$ (b) $\frac{1001}{0011}=0011$ (c) $\frac{1100}{0100}=0011$

## Section 2-5 1's and 2's Complements of Binary Numbers

19. (a) The 1's complement of 101 is 010.
(b) The 1's complement of 110 is 001.
(c) The 1's complement of 1010 is 0101.
(d) The 1's complement of 11010111 is 00101000.
(e) The 1's complement of 1110101 is 0001010.
(f) The 1's complement of 00001 is 11110.
20. Take the 1's complement and add 1:

| (a) $01+1=10$ | (b) $000+1=001$ |  |
| :--- | :--- | :--- |
| (c) $0110+1=0111$ | (d) $0010+1=0011$ |  |
| (e) $00011+1=00100$ |  | (f) $01100+1=01101$ |
| (g) $01001111+1=01010000$ | (h) | $11000010+1=11000011$ |

Section 2-6 Signed Numbers
21. (a) Magnitude of $29=0011101$
= 1010101

$$
+29=00011101
$$

(c) Magnitude of $100_{10}=1100100$
$123=1111011$
$+100=01100100$
22. (a) Magnitude of $34=0100010$
= 0111001
$-34=11011101$
(c) Magnitude of $99=1100011$
$115=1110011$
$-99=10011100$
23. (a) Magnitude of $12=1100$
= 1000100
(b) Magnitude of 85
$-85=11010101$
(d) Magnitude of -123 = 11111011
(b) Magnitude of 57

$$
+57=00111001
$$

(d) Magnitude of
$+115=01110011$
(b) Magnitude of 68

```
+12 = 00001100 -68 = 10111100
```

(c) Magnitude of $101_{10}=1100101$
$125=1111101$
$+101_{10}=01100101 \quad-125=10000011$
24. (a) $10011001=-25$
(b) $01110100=+116$
(c)
$10111111=-63$
25. (a) $10011001=-(01100110)=-102$
(b) $01110100=+(1110100)=+116$
(c) $10111111=-(1000000)=-64$
26. (a) $10011001=-(1100111)=-103$
(b) $01110100=+(1110100)=+116$
(c) $10111111=-(1000001)=-65$
27. (a) 0111110000101011 $\rightarrow$ sign $=0$
$1.11110000101011 \times 2^{14} \rightarrow$ exponent $=127+14+141=10001101$ Mantissa $=11110000101011000000000$
01000110111110000101011000000000
(b) $100110000011000 \rightarrow$ sign $=1$
$1.10000011000 \times 2^{11} \rightarrow$ exponent $=127+11=138=10001010$
Mantissa = 11000001100000000000000
11000101011000001100000000000000
28. (a) 11000000101001001110001000000000

Sign = 1
Exponent $=10000001=129-127=2$
Mantissa $=1.01001001110001 \times 2^{2}=101.001001110001$
$-101.001001110001=-5.15258789$
(b) 01100110010000111110100100000000

Sign = 0
Exponent $=11001100=204-127=77$
Mantissa $=1.100001111101001$
$1.100001111101001 \times 2^{77}$

## Section 2-7 Arithmetic Operations with Signed Numbers



## http://ebook29.blogspot.com



Changing to 2 's complement with sign: 100111001010
34. $\frac{01000100}{00011001}=00000010$
$\frac{68}{25}=2$, remainder of 18

## Section 2-8 Hexadecimal Numbers

35. (a) $38_{16}=00111000$
(b) $\quad 59_{16}=01011001$
(c) $\mathrm{A} 14_{16}=101000010100$
(d) $5 \mathrm{C8}_{16}=010111001000$
(e) $4100_{16}=0100000100000000$
(f) $\mathrm{FBl7}_{16}^{16}=1111101100010111$
(g) $8 \mathrm{~A}_{\mathrm{g}}^{16} \mathrm{=} 1000101010011101$
36. (a) $1110=E_{16}$
(b) $10=2_{16}$
(c) $00010111=17_{16}$
(d) $10100110=\mathrm{Ab}_{16}$
(e) $001111110000^{16}=3 \mathrm{FO}_{16}$
(f) $100110000010=982_{16}^{16}$
37. (a) $23_{16}=2 \times 16^{1}+3 \times 16^{0}=32+3=35$
(b) $92_{16}=9 \times 16^{1}+2 \times 16^{0}=144+2=146$
(c) $1 \mathrm{~A}_{16}=1 \times 16^{1}+10 \times 16^{0}=16+10=26$
(d) $8 \mathrm{D}_{16}=8 \times 16^{1}+13 \times 16^{0}=128+13=141$
(e) $F 3_{16}=15 \times 16^{1}+3 \times 16^{0}=240+3=243$
(f) $\quad \mathrm{EB}_{16}=14 \times 16^{1}+11 \times 16^{0}=224+11=235$
(g) $\quad 5 \mathrm{C} 2_{16}=5 \times 16^{2}+12 \times 16^{1}+2 \times 16^{0}=1280+192+2=1474$
(h) $700_{16}=7 \times 16^{2}=1792$
38. 

(a) $\frac{8}{16}=0$, remainder $=8$


## Section 2-9 Octal Numbers

41. (a) $12_{8}=1 \times 8^{1}+2 \times 8^{0}=8+2=10$
(b) $\quad 27_{8}=2 \times 8^{1}+7 \times 8^{0}=16+7=23$
(c) $56_{8}=5 \times 8^{1}+6 \times 8^{0}=40+6=46$
(d) $64_{8}=6 \times 8^{1}+4 \times 8^{0}=48+4=52$
(e) $103_{8}=1 \times 8^{2}+3 \times 8^{0}=64+3=67$
(f) $\quad 557_{8}=5 \times 8^{2}+5 \times 8^{1}+7 \times 8^{0}=320+40+7=367$
(g) $\quad 163_{8}=1 \times 8^{2}+6 \times 8^{1}+3 \times 8^{0}=64+48+3=115$
(h) $1024_{8}=1 \times 8^{3}+2 \times 8^{1}+4 \times 8^{0}=512+16+4=532$
(i) $7765_{8}=7 \times 8^{3}+7 \times 8^{2}+6 \times 8^{1}+5 \times 8^{0}=3584+448+48+5=$

4085
42. (a) $\frac{15}{8}=1$, remainder $=7$
c) $\frac{46}{8}=5$, remainder $=6$
(LSD)
(LSD)
(e) $\frac{100}{8}=12$, remainder $=4$
(d) $\frac{70}{8}=8$, remainder $=6$
$\frac{1}{8}=0$, remainder $=1$
octal number $=178$
$\frac{8}{8}=1$, remainder $=0$ $\frac{1}{8}=0$, remainder $=1$ octal number $=106_{8}$
$\frac{5}{8}=0$, remainder $=5$
octal number $=56_{8}$

$$
\text { octal number }=33_{8}
$$

$$
\frac{12}{8}=1, \text { remainder }=4
$$

$\frac{1}{8}=0$, remainder $=1$
octal number $=144_{8}$
(f) $\frac{142}{8}=17$, remainder $=6$

$$
\begin{equation*}
\frac{17}{8}=2, \text { remainder }=1 \tag{LSD}
\end{equation*}
$$

$\frac{2}{8}=0$, remainder $=2$
octal number $=2168$
(h) $\frac{435}{8}=54$, remainder $=3$
(LSD)
$\frac{54}{8}=6$, remainder $=6$
$\frac{6}{8}=0$, remainder $=6$
octal number $=663_{8}$
(LSD)
(g) $\frac{219}{8}=27$, remainder $=3$
$\frac{3}{8}=0$, remainder $=3$
octal number $=333_{8}$
(b) $\frac{27}{8}=3$, remainder $=3$ (LSD)

$$
\frac{3}{8}=0, \text { remainder }=3
$$

## http://ebook29.blogspot.com

43. (a) 13. = 001011
(b) $57_{8}^{\circ}=101111$
(c) 101 = 001000001
(d) $321_{8}^{8}=011010001$
(e) $540_{8}=101100000$
(f) $4653=100110101011$
(g) $\quad 13271_{8}=001011010111001$
(h) $45600_{8}=100101110000000$
(i) $100213_{8}^{8}=001000000010001011$
44. (a) $\quad 111=7$
(b) $010=2$
(c) $110111=67$
(d) $101010=52_{8}^{8}$
(e) $001100=148$
(f) $001011110=136$ 。
(g) $101100011001=5431_{8}$
(h) $010110000011=2603_{8}$
(i) $111111101111000=77570_{8}$

## Section 2-10 Binary Coded Decimal (BCD)

45. (a) $10=00010000$
(b) $13=00010011$
(c) $18=00011000$
(d) $21=00100001$
(e) $25=00100101$
(f) $36=00110110$
(g) $44=01000100$
(h) $57=01010111$
(i) $69=01101001$
(j) $98=10011000$
(k) $125=000100100101$
(1) $156=000101010110$
46. (a) $10=1010_{2} \quad 4$ bits binary, 8 bits BCD
(b) $\quad 13=1101_{2} \quad 4$ bits binary, 8 bits BCD
(c) $\quad 18=10010_{2} \quad 5$ bits binary, 8 bits BCD
(d) $21=10101_{2}^{2} \quad 5$ bits binary, 8 bits BCD
(e) $25=11001_{2} \quad 5$ bits binary, 8 bits BCD
(f) $36=10010^{2} 0_{2} 6$ bits binary, 8 bits BCD
(g) $44=101100_{2} 6$ bits binary, 8 bits BCD
(h) $57=111001_{2} 6$ bits binary, 8 bits $B C D$
(i) $\quad 69=1000101_{2} \quad 7$ bits binary, 8 bits BCD
(j) $98=1100010_{2} \quad 7$ bits binary, 8 bits BCD
(k) $125=1111101_{2}^{2} \quad 7$ bits binary, 12 ibts BCD
(1) $156=10011100_{2} \quad 8$ bits binary, 12 bits BCD

## http://ebook29.blogspot.com

47. (a) $104=000100000100$
(b) $128=000100101000$
(c) $132=000100110010$
(d) $150=000101010000$
(e) $186=000110000110$
(f) $210=001000010000$
(g) $359=001101011001$
(h) $547=010101000111$
(i) $1051=0001000001010001$
48. (a) $0001=1$
(c) $1001=9$
(e) $00011001=19$
(g) $01000101=45$
(i) $100001110000=870$
(b) $0110=6$
(d) $00011000=18$
(f) $00110010=32$
(h) $10011000=98$
(a) $10000000=80$
(b) $001000110111=237$
(c) $001101000110=346$
(d) $010000100001=421$
(e) $011101010100=754$
(f) $100000000000=800$
(g) $100101111000=978$
(h) $0001011010000011=1683$
(i) $1001000000011000=9018$
(j) $0110011001100111=6667$
49. 

| (a) | $\begin{array}{r} 0010 \\ +\quad 0001 \\ \hline 0011 \end{array}$ | (b) | $\begin{array}{r} 0101 \\ +\quad 0011 \\ \hline 1000 \end{array}$ | (c) | $\begin{array}{r} 0111 \\ +\quad 0010 \\ \hline 1001 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (d) | $\begin{array}{r} 1000 \\ +\quad 0001 \\ \hline 1001 \end{array}$ | (e) | $\begin{array}{r} 00011000 \\ +\quad 00010001 \\ \hline 00101001 \end{array}$ | (f) | $\begin{array}{r} 01100100 \\ +\quad 00110011 \\ \hline 10010111 \end{array}$ |
| (g) | $\begin{array}{r} 01000000 \\ +\quad 01000111 \\ \hline 10000111 \end{array}$ | (h) | $\begin{array}{r} 10000101 \\ +\quad 01000111 \\ \hline 10000111 \end{array}$ |  |  |

51. (a)

> | 1000 |
| :--- |
| +0110 |
| $11:$ inval $_{\substack{--1}}^{+0110}$ |
| 00010100 |

(c)
1001
$+1000$
100 inval
$\frac{+0110}{00010111}$
(e)
00100101

$\frac{00100111}{010011}$| inval |
| :--- |
| +0110 |
| 01010010 |

(g)

$$
\begin{aligned}
& 10011000 \\
& +10010111 \\
& \mathrm{C}_{1001011}^{\text {inval }} \\
& +01100110^{-\rightarrow-1}
\end{aligned}
$$

(b)

$$
\begin{array}{r}
0111 \\
+0101 \\
\hline 1100 \\
+0110 \\
\hline 00010010
\end{array}
$$

(d)

$$
\begin{aligned}
& 1001 \\
& +\frac{011}{1000} u_{i n}^{\text {inval }} \\
& +0110
\end{aligned}
$$

(f)

$$
\begin{aligned}
& 01010001 \\
& +01011000 \\
& \hline 1010100 \\
& +0110 \\
& \hline 00100001001
\end{aligned}
$$

(h)

$$
\begin{array}{r}
010101100001 \\
+011100001000 \\
\hline 110001101001 \\
+0110 \\
\hline 0001001001101001
\end{array}
$$

52. 

| (a) | $\begin{gathered} 4+3 \\ 0100 \end{gathered}$ | (b) | $\begin{gathered} 5+2 \\ +0101 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
|  | + 0011 |  | + 0010 |
|  | 0111 |  | 0111 |
| (c) | $6+\underbrace{4}_{0110}$ | (d) | $\begin{aligned} & 17+12 \\ & 00010111 \end{aligned}$ |
|  | +0100 |  | +00100010 |
|  | 1010 |  | 00101001 |
|  | +0110 | (f) | $65+58$ |
|  | 00010000 |  | 01100101 |
| (e) | $28+23$ |  | +01011000 |
|  | 00101000 |  | 10111101 |
|  | + 00100011 |  | +01100110 |
|  | 01001011 |  | 000100100011 |
|  | +0110 | (h) | $295+157$ |
|  | 01010001 |  | 001010010101 |
| (g) | $113+101$ |  | +000101010111 |
|  | 000100010011 |  | 001111101100 |
|  | + 000100000001 |  | + 01100110 |
|  | 001000010100 |  | 010001010010 |

## Section 2-11 Digital Codes

53. The Gray code makes only one bit change at a time when going from one number in the sequence to the next number.
Gray for $1111_{2}=1000$
Gray for $0000_{2}=0000$

http://ebook29.blogspot.com

54. 30 INPUT A, B

| 3 | 0110011 | $33^{16}$ |
| :--- | :--- | :--- |
| 0 | 0110000 | $30^{16}$ |
| SP | 0100000 | $20^{16}$ |
| I | 1001001 | $49^{16}$ |
| N | 1001110 | $4 \mathrm{E}^{16}$ |
| P | 1010000 | $50^{16}$ |
| U | 1010101 | $55^{16}$ |
| T | 1010100 | $54^{16}$ |
| SP | 0100000 | $20^{16}$ |
| A | 1000001 | $41_{16}$ |
| ' | 0101100 | $2 \mathrm{C}_{16}$ |
| B | 1000010 | $42_{16}$ |

## Section 2-12 Error Detection and Correction Codes

61. Code (b) 011101010 has five 1s, so it is in error.
62. Codes (a) 11110110 and (c) 01010101010101010 are in error because they have an even number of $1 s$.
63. 

(a) 110100100
(b)
000001001
(c) 111111110
64. $d=4$
$2^{p} \geq d+p+1$
$2^{3}=4+3+1=8$
$p=3$
parity = even

| Bit Designation | $P_{1}$ | $P_{2}$ | $D_{1}$ | $P_{3}$ | $D_{2}$ | $D_{3}$ | $D_{4}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Binary Position Number | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
| Data Bits $\left(D_{n}\right)$ |  |  | 1 |  | 1 | 0 | 0 |
| Parity Bits $\left(P_{n}\right)$ | 0 | 1 |  | 1 |  |  |  |

$P_{1}$ checks bit positions $1,3,5$, and 7.

$$
P_{1}=0
$$

$P_{2}$ checks bit positions 2, 3, 6, and 7. $P_{2}=1$
$P_{3}$ checks bit positions 3, 5, 6, and 7. $P_{3}=1$

The combined code is 0111100.
65. $d=5$
$2^{p} \geq d+p+1$
$2^{4}=5+4+1=10$
$p=4$
parity = odd

| Bit Designation Bit Position Binary Position Number | $\begin{gathered} P_{1} \\ 1 \\ 0001 \end{gathered}$ | $\begin{gathered} P_{2} \\ 2 \\ 0010 \end{gathered}$ | $\begin{gathered} D_{1} \\ 3 \\ 0011 \end{gathered}$ | $\begin{gathered} P_{3} \\ 4 \\ 0100 \end{gathered}$ | $\begin{gathered} D_{2} \\ 5 \\ 0101 \end{gathered}$ | $\begin{gathered} D_{3} \\ 6^{2} \\ 0110 \end{gathered}$ | $\begin{gathered} D_{4} \\ 7 \\ 0111 \end{gathered}$ | $\begin{gathered} P_{4} \\ 8 \\ 1000 \end{gathered}$ | $\begin{gathered} D_{5} \\ 9 \\ 1001 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data Bits ( $D_{n}$ ) |  |  | 1 |  | 1 | 0 | 0 |  | 1 |
| Parity Bits ( $P_{n}$ ) | 0 | 0 |  | 0 |  |  |  | 0 |  |

$P_{1}$ checks bit positions 1, 3, 5, 7, and 9.
$P_{1}=0$
$P_{2}$ checks bit positions 2, 3, 6, and 7. $P_{2}=0$
$P_{3}$ checks bit positions 4, 5, 6, and 7. $P_{3}=0$
$P_{4}$ checks bit positions 8 and 9. $P_{4}=0$

The combined code is 001010001.
66. (a) Even parity

|  | $\begin{gathered} P_{1} \\ 001 \end{gathered}$ | $\begin{gathered} P_{2} \\ 010 \end{gathered}$ | $\begin{gathered} D_{1} \\ 011 \end{gathered}$ | $\begin{gathered} P_{3} \\ 100 \end{gathered}$ | $\begin{gathered} D_{2} \\ 101 \end{gathered}$ | $\begin{gathered} D_{3} \\ 110 \end{gathered}$ | $\begin{gathered} D_{4} \\ 111 \end{gathered}$ | Check result (0 good, 1 bad) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{1}$ checks 1, 3, <br> 5, 7 <br> $P_{2}$ checks 2, 3, <br> 6, 7 <br> $P_{3}$ checks 4, 5, <br> 6, 7 | $\begin{aligned} & \frac{1}{1} \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & \frac{1}{1} \end{aligned}$ | $\frac{1}{\frac{1}{1}}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | 1 1 1 | $\begin{aligned} & 0 \\ & \underline{0} \\ & \underline{0} \end{aligned}$ | $\begin{aligned} & \underline{0} \\ & \underline{0} \\ & \underline{0} \end{aligned}$ | $\begin{array}{ll} 1 & \text { (LSB) } \\ 0 & \\ 1 & \end{array}$ |

The error position code is 101. The corrected code is 1110000.
(b) Even parity

|  | $\begin{gathered} P_{1} \\ 001 \end{gathered}$ | $\begin{gathered} P_{2} \\ 010 \end{gathered}$ | $\begin{gathered} D_{1} \\ 011 \end{gathered}$ | $\begin{gathered} P_{3} \\ 100 \end{gathered}$ | $\begin{gathered} D_{2} \\ 101 \end{gathered}$ | $\begin{array}{r} D_{3} \\ 110 \end{array}$ | $\begin{gathered} D_{4} \\ 111 \end{gathered}$ | Check result <br> (0 good, 1 <br> bad) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{1}$ checks 1, 3, | 1 | 0 | $\underline{0}$ | 0 | $\underline{1}$ | 1 | $\underline{1}$ | 1 (LSB) |
| 5, 7 | 1 | $\bigcirc$ | $\bigcirc$ | 0 | 1 | 1 | 1 |  |
| $P_{2}$ checks 2, 3, | 1 | 0 | 0 | $\bigcirc$ | $\underline{1}$ | $\underline{1}$ | $\underline{1}$ | 1 |
| $\begin{aligned} & 6_{1}, 7 \\ & P_{3} \text { checks 4, 5, } \end{aligned}$ |  |  |  |  |  |  |  |  |

The error position code is 101. The corrected code is 1000011.
67. (a) Odd parity

|  | $\begin{gathered} P_{1} \\ 000 \\ 1 \end{gathered}$ | $\begin{gathered} P_{2} \\ 001 \\ 0 \end{gathered}$ | $\begin{gathered} D_{1} \\ 001 \\ 1 \end{gathered}$ | $\begin{gathered} P_{3} \\ 010 \\ 0 \end{gathered}$ | $\begin{gathered} D_{2} \\ 01_{0} \\ 1 \end{gathered}$ | $\begin{gathered} D_{3} \\ 01_{1} \\ 0 \end{gathered}$ | $\begin{gathered} D_{4} \\ 011 \\ 1 \end{gathered}$ | $\begin{gathered} P_{4} \\ 100 \\ 0 \end{gathered}$ | $\begin{gathered} D_{5} \\ 100 \\ 1 \end{gathered}$ | ```Check result (0 good, 1 bad)``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{1}$ checks 1, 3, | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 5, 7, 9 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | (LSB) |
| $P_{2}$ checks 2, 3, | 1 | 1 | 0 | 1 | $\underline{0}$ | $\underline{0}$ | $\underline{0}$ | 1 | 1 | 0 |
| 6, 7 , | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| $P_{3}$ checks 4, 5, |  |  |  |  |  |  |  |  |  | 1 |
| $\begin{aligned} & 6^{3}, ~ \\ & P_{4}^{\prime} \text { checks } 8,9 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |

The error position code is 1001. The corrected code is
110100010.
(b) Odd parity

|  | $\begin{gathered} P_{1} \\ 000 \\ 1 \end{gathered}$ | $\begin{gathered} P_{2} \\ 001 \\ 0 \end{gathered}$ | $\begin{gathered} D_{1} \\ 001 \\ 1 \end{gathered}$ | $\begin{gathered} P_{3} \\ 01_{0} \\ 0 \end{gathered}$ | $\begin{gathered} D_{2} \\ 01^{10} \\ 1 \end{gathered}$ | $\begin{gathered} D_{3} \\ 01_{1} \\ 0 \end{gathered}$ | $\begin{gathered} D_{4} \\ 01_{1} \\ 1 \end{gathered}$ | $\begin{gathered} P_{4} \\ 100 \\ 0 \end{gathered}$ | $\begin{gathered} D_{5} \\ 100 \\ 1 \end{gathered}$ | ```Check result (0 good, 1 bad)``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P_{1}$ checks 1, 3, | 1 | 0 | $\underline{0}$ | 0 | $\underline{0}$ | 1 | 1 | 0 | 1 | 0 (LSB) |
| 5, 7, 9 | 1 | 0 | $\underline{0}$ | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| $P_{2}$ checks 2, 3, | 1 | 0 | 0 | 0 | 0 | $\underline{1}$ | $\underline{1}$ | 0 | 1 | 1 |
| 6, 7 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| $P_{3}$ checks 4, 5, |  |  |  |  |  |  |  |  |  |  |
| 6, 7 |  |  |  |  |  |  |  |  |  |  |
| $P_{\text {a }}$ checks 8, 9 |  |  |  |  |  |  |  |  |  |  |

100000101. 

CHAPTER 3
LOGIC GATES

Section 3-1 The Inverter

1. See Figure 3-1.

2. $B:$ LOW, $C$ : HIGH, $D:$ LOW, $E:$ HIGH, $F$ : LOW

## Section 3-2 The AND Gate

3. See Figure 3-2.

4. See Figure 3-4.

5. See Figure 3-5.


FIGURE 3-5
Section 3-3 The OR Gate
7. See Figure 3-ヶ

A
B
X

8. See Figure 3-7.

A
B

C

X


FIGURE 3-7
9. See Figure 3-8.

10. See Figure 3-9.


Section 3-4 The NAND Gate
11. See Figure 3-10.


FIGURE 3-10
12. See Figure 3-11.


FIGURE 3-11
13. See Figure 3-12.

14. See Figure 3-13.


FIGURE 3-13

## Section 3-5 The NOR Gate

15. See Figure 3-14.


FIGURE 3-14
16. See Figure 3-15.

17. See Figure 3-16.

18. See Figure 3-17.


Section 3-6 The Exclusive-OR and Exclusive-NOR Gates
19. The output of the XOR gate is HIGH only when one input is HIGH. The output of the OR gate is HIGH any time one or more inputs are HIGH.

```
XOR = A\overline{B}+\overline{A}B
OR=A + B
```

20. See Figure 3-18.


FIGURE 3-18
21. See Figure 3-19.

22. See Figure 3-20.


## Section 3-7 Programmable Logic

$$
\text { 23. } \begin{aligned}
X_{1} & =\bar{A} B \\
X_{2} & =\bar{A} \bar{B} \\
X_{3} & =A \bar{B}
\end{aligned}
$$

24. $X_{1}=\bar{A} B C$

Row 1: blow $A, B, \bar{B}, C$, and $\bar{C}$ column fuses
Row 2: blow $A, \bar{A}, \bar{B}, C$, and $\bar{C}$ column fuses
Row 3: blow $A, \bar{A}, B, \bar{B}$, and $\bar{C}$ column fuses
$X_{2}=A B \bar{C}$
Row 4: blow $\bar{A}, B, \bar{B}, C$, and $\bar{C}$ column fuses
Row 5: blow $A, \bar{A}, \bar{B}, C$, and $\bar{C}$ column fuses
Row 6: blow $A, \bar{A}, B, \bar{B}$, and $C$ column fuses
$X_{3}=\bar{A} B \bar{C}$
Row 7: blow $A, B, \bar{B}, C$, and $\bar{C}$ column fuses
Row 8: blow $A, \bar{A}, \bar{B}, C$, and $\bar{C}$ column fuses
Row 9: blow $A, \bar{A}, B, \bar{B}$, and $C$ column fuses
Section 3-8 Fixed-Function Logic
25. The power dissipation of CMOS increases with frequency.
26. (a) $P=\left(\frac{I_{\mathrm{CCH}}+I_{\mathrm{CCL}}}{2}\right) V_{\mathrm{CC}}=\left(\frac{1.6 \mathrm{~mA}+4.4 \mathrm{~mA}}{2}\right) 5.5 \mathrm{~V}=16.5 \mathrm{~mW}$
(b) $\quad V_{\text {OH (min) }}=2.7 \mathrm{~V}$
(c) $t_{\text {PLH }}^{\text {on min }}=T_{\text {PHL }}=15 \mathrm{~ns}$
(d) $V_{\text {oI }}=0.4 \mathrm{~V}(\max )$
(e) @ $V_{C C}=2 \mathrm{~V}, t_{\text {PHL }}=t_{P L H}=75 \mathrm{~ns} ; @ V_{C C}=6 \mathrm{~V}, t_{P H L}=t_{\text {PLH }}=13 \mathrm{~ns}$
27. See Figure 3-21.


FIGURE 3-21
28. Gate A can be operated at the highest frequency because it has shorter propagation delay times than Gate B.
29. $P_{D}=V_{\mathrm{cC}} I_{C}=(5 \mathrm{~V})(4 \mathrm{~mA})=20 \mathrm{~mW}$
30. $I_{\text {сСН }}=4 \mathrm{~mA} ; \quad P_{D}=(5 \mathrm{~V})(4 \mathrm{~mA})=20 \mathrm{~mW}$

## Section 3-9 Troubleshooting

31. (a) NAND gate OK
(b) AND gate faulty
(c) NAND gate faulty
(d) NOR gate OK
(e) XOR gate faulty
(f) XOR gate OK
32. (a) NAND gate faulty. Input A open.
(b) NOR gate faulty. Input $B$ shorted to ground.
(c) NAND gate OK
(d) XOR gate faulty. Input A open.
33. (a) The gate does not respond to pulses on either input when the other input is HIGH. It is unlikely that both inputs are open. The most probable fault is that the output is stuck in the LOW state (shorted to ground, perhaps) although it could be open.
(b) Pin 4 input or pin 6 output internally open.
34. The timer input to the AND gate is open. Check for 30 -second HIGH level on this input when ignition is turned on.
35. An open seat-belt input to the AND gate will act like a constant HIGH just as if the seat belt were unbuckled.
36. Two possibilities: An input stuck LOW or the output stuck HIGH.

## Special Design Problems

37. See Figure 3-22.

FIGURE 3-22

38. See Figure 3-23.

39. Add an inverter to the Enable input line of the AND gate as shown in Figure 3-24.


## http://ebook29.blogspot.com

40. See Figure 3-25.

41. See Figure 3-26.

42. See Figure 3-27.

43. See Figure 3-28.

FIGURE 3-


## Multisim Troubleshooting Practice

44. Input A shorted to output.
45. Inputs shorted together.
46. No fault.
47. Output open.

## CHAPTER 4

BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

## Section 4-1 Boolean Operations and Expressions

1. $X=A+B+C+D$

This is an OR configuration.
2. $Y=A B C D E$
3. $X=\bar{A}+\bar{B}+\bar{C}$
4.
(a) $0+0+1=1$
(b) $1+1+1=1$
(c) $1 \cdot 0 \cdot 0=1$
(d) $1 \cdot 1 \cdot 1=1$
(e) $1 \cdot 0 \cdot 1=0$
(f) $1 \cdot 1+0 \cdot 1 \cdot 1=1+0=1$
5. (a) $A B=1$ when $A=1, B=1$
(b) $A \bar{B} C=1$ when $A=1, B=0, C=1$
(c) $A+B=0$ when $A=0, B=0$
(d) $\bar{A}+B+\bar{C}=0$ when $A=1, B=0, C=1$
(e) $\bar{A}+\bar{B}+C=0$ when $A=1, B=1, C=0$
(f) $\bar{A}+B=0$ when $A=1, B=0$
(g) $\quad A \bar{B} \bar{C}=1$ when $A=1, B=0, C=0$
6.
(a) $\quad X=(A+B) C+B$

| $A$ | $B$ | $C$ | $A+$ | $(A+B) C$ | $X$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

(b) $\quad X=(\overline{A+B}) C$

| $A$ | $B$ | $C$ | $\overline{A+B}$ | $X$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 |

(c) $X=A \bar{B} C+A B$

| $A$ | $B$ | $C$ | $A \bar{B} C$ | $A B$ | $X$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 |


| 1 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 |

(d) $\quad X=(A+B)(\bar{A}+B)$

| $A$ | $B$ | $A+B$ | $\bar{A}+B$ | $X$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

(e) $\quad X=(A+B C)(\bar{B}+\bar{C})$

| $A$ | $B$ | $C$ | $A+B C$ | $\bar{B}+\bar{C}$ | $X$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 |

## Section 4-2 Laws and Rules of Boolean Algebra

7. (a) Commutative law of addition
(b) Commutative law of multiplication
(c) Distributive law
8. Refer to Table 4-1 in the textbook.
(a) Rule 9: $\quad \overline{\bar{A}}=A$
(b) Rule 8: $\quad A \bar{A}=0$ (applied to 1st and 3rd terms)
(c) Rule 5: $A+A=A$
(d) Rule 6: $A+\bar{A}=1$
(e) Rule 10: $A+A B=A$
(f) Rule 11: $A+A B=A+B$ (applied to 1st and 3rd terms)

Section 4-3 DeMorgan's Theorems
9.
(a) $\overline{A+\bar{B}}=\bar{A} \overline{\bar{B}}=\bar{A} \boldsymbol{B}$
(b) $\overline{\bar{A} B}=\overline{\bar{A}}+\bar{B}=A+\bar{B}$
(c) $\overline{A+B+C}=\overline{\boldsymbol{A}} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}}$
(d) $\overline{A B C}=\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}+\overline{\boldsymbol{C}}$
(e) $\overline{A(B+C)}=\bar{A}+\overline{(B+C)}=\overline{\boldsymbol{A}}+\bar{B} \bar{C}$
(£) $\quad \overline{A B}+\overline{C D}=\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}+\overline{\boldsymbol{C}}+\overline{\boldsymbol{D}}$
(g) $\quad \overline{A B+C D}=\overline{(A B)(C D)}=(\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}})(\overline{\boldsymbol{C}}+\overline{\boldsymbol{D}})$
(h) $\overline{(A+\bar{B})(\bar{C}+D)}=\overline{A+\bar{B}}+\overline{\bar{C}+D}=\overline{\boldsymbol{A}} \boldsymbol{B}+\boldsymbol{C} \overline{\boldsymbol{D}}$
10. (a) $\overline{A \bar{B}(C+\bar{D})}=\overline{A \bar{B}}+\overline{(C+\bar{D})}=\overline{\boldsymbol{A}}+\boldsymbol{B}+\overline{\boldsymbol{C}} \boldsymbol{D}$
(b) $\overline{A B(C D+E F)}=\overline{A B}+\overline{(C D+E F)}=\bar{A}+\bar{B}+\overline{(C D)} \overline{(E F)}$
$=\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}+(\overline{\boldsymbol{C}}+\overline{\boldsymbol{D}})(\overline{\boldsymbol{E}}+\overline{\boldsymbol{F}})$
(c) $\overline{(A+\bar{B}+C+\bar{D})}+\overline{A B C \bar{D}}=\overline{\boldsymbol{A}} \boldsymbol{B} \overline{\boldsymbol{C}} \boldsymbol{D}+\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}+\overline{\boldsymbol{C}}+\boldsymbol{D}$
(d) $(\overline{\bar{A}}+B+C+D)(A \bar{B} \bar{C} D)=(\overline{A \bar{B}} \bar{C} \bar{D})(\bar{A}+B+C+\bar{D})$
$=\overline{A \bar{B} \bar{C}} \overline{\bar{D}}+\overline{\bar{A}}+B+C+\overline{\bar{D}}=\overline{\boldsymbol{A}}+\boldsymbol{B}+\boldsymbol{C}+\boldsymbol{D}+\boldsymbol{A} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}} \boldsymbol{D}$
$\overline{\overline{A B}(C D+\bar{E} F)(\overline{A B}+\overline{C D})}=\overline{\overline{A B}}+(\overline{C D+\bar{E} F})+(\overline{\overline{A B}+\overline{C D}})$
$=A B+(\overline{C D})(\overline{\bar{E} F})+(\overline{\overline{A B}})(\overline{\overline{C D}})$
$=\boldsymbol{A B}+(\overline{\boldsymbol{C}}+\overline{\boldsymbol{D}})(\boldsymbol{E}+\overline{\boldsymbol{F}})+\boldsymbol{A B C D}$

$=\overline{A B C+E F G+H I J+K L M}=(\overline{A B C})(\overline{E F G})(\overline{H I J})(\overline{K L M})$
$=(\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}+\overline{\boldsymbol{C}})(\overline{\boldsymbol{E}}+\overline{\boldsymbol{F}}+\overline{\boldsymbol{G}})(\overline{\boldsymbol{H}}+\overline{\boldsymbol{I}}+\overline{\boldsymbol{J}})(\overline{\boldsymbol{K}}+\overline{\boldsymbol{L}}+\overline{\boldsymbol{M}})$
(b) $\quad(\overline{A+\overline{B \bar{C}}+C D})+\overline{\overline{B C}}=\bar{A}(\overline{B \bar{C}})(\overline{C D})+B C=\bar{A}(B \bar{C})(\overline{C D})+B C$
$=\bar{A} B \bar{C}(\bar{C}+\bar{D})+B C=\bar{A} B \bar{C}+\bar{A} B \bar{C} \bar{D}+B C=\bar{A} B \bar{C}(1+\bar{D})+B C$
$=\bar{A} B \bar{C}+B C$
(c) $\quad \overline{\overline{A+B})(\overline{C+D})(\overline{E+F})(\overline{G+H})}$
$=(\overline{A+B)}(\overline{C+D})(\overline{E+F})(\overline{G+H})=\overline{\boldsymbol{A}} \overline{\boldsymbol{B}} \overline{\boldsymbol{D}} \overline{\boldsymbol{E}} \overline{\boldsymbol{F} \boldsymbol{G}} \overline{\boldsymbol{H}}$

## Section 4-4 Boolean Analysis of Logic Circuits

12. 

(a) $\quad A B=X$
(b) $\quad \bar{A}=X$
$\begin{array}{ll}\text { (c) } & A+B=X \\ \text { (d) } & A+B+C=X\end{array}$
13. See Figure 4-1.

15. See Figure 4-3.
16.

(a) $X=A \bar{B}+\bar{A} B$

(c) $X=\bar{A} B(C+\bar{D})$
(b) $X=A B+\bar{A} \bar{B}+\bar{A} B C$
(d) $X=A+B[C+D(B+\bar{C})]$


| 0 | 0 | 0 |
| :--- | :--- | :--- |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

(d) $\quad X=(A+B) C$

| $A$ | $B$ | $C$ | $X$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

(e) $\quad X=(A+B)(\bar{B}+C)$

| $A$ | $B$ | $C$ | $A+B$ | $\bar{B}+C$ | $X$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 |

Section 4-5 Simplification Using Boolean Algebra
17. (a) $A(A+B)=A A+B B=A+A B=A(1+B)=A$
(b) $\quad A(\bar{A}+A B)=A \bar{A}+A A B=0+A B=A B$
(c) $B C+\bar{B} C=C(B+\bar{B})=C(1)=C$
(d) $A(A+\bar{A} B)=A A+A \bar{A} B=A+(0) B=A+0=A$
(e) $\quad A \bar{B} C+\bar{A} B C+\bar{A} \bar{B} C=A \bar{B} C+\bar{A} C(B+\bar{B})=A \bar{B} C+\bar{A} C(1)$
$=A \bar{B} C+\bar{A} C=C(\bar{A}+A \bar{B})=C(\bar{A}+\bar{B})=\bar{A} C+\bar{B} C$
18. (a) $(A+\bar{B})(A+C)=A A+A C+A \bar{B}+\bar{B} C=A+A C+A \bar{B}+\bar{B} C$
$=A(1+C+\bar{B})+\bar{B} C=A(1)+\bar{B} C=\boldsymbol{A}+\bar{B} C$
(b) $\quad \bar{A} B+\bar{A} B \bar{C}+\bar{A} B C D+\bar{A} B \bar{C} \bar{D} E=\bar{A} B(1+\bar{C}+C D+\bar{C} \bar{D} E)=\bar{A} B(1)$
$=\bar{A} B$
(c) $A B+\overline{A B} C+A=A B+(\bar{A}+\bar{B}) C+A=A B+\bar{A} C+\bar{B} C+A$
$A(B+1)+\bar{A} C+\bar{B} C=A+\bar{A} C+\bar{B} C=A+C+\bar{B} C=A+C(1+\bar{B})$
$=\boldsymbol{A}+\boldsymbol{C}$
(d) $\quad(A+\bar{A})(A B+A B \bar{C})=A A B+A A B \bar{C}+\bar{A} A B+\bar{A} A B \bar{C}$

$$
=A B+A B \bar{C}+0+0=A B(1+\bar{C})=A \boldsymbol{B}
$$

(e) $\quad A B+(\bar{A}+\bar{B}) C+A B=A B+\bar{A} C+\bar{B} C+A B=A B+(\bar{A}+\bar{B}) C$
$=A B+\overline{A B} C=\boldsymbol{A B}+\boldsymbol{C}$
19. (a) $B D+B(D+E)+\bar{D}(D+F)=B D+B D+B E+\bar{D} D+\bar{D} F$

$$
=B D+B E+0+\bar{D} F=\boldsymbol{B} \boldsymbol{D}+\boldsymbol{B} \boldsymbol{E}+\overline{\boldsymbol{D}} \boldsymbol{F}
$$

(b) $\quad \bar{A} \bar{B} C+(\overline{A+B+\bar{C}})+\bar{A} \bar{B} \bar{C} D=\bar{A} \bar{B} C+\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C} D=\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C} D$
$=\bar{A} \bar{B}(C+\bar{C} D)=\bar{A} \bar{B}(C+D)=\bar{A} \bar{B} C+\bar{A} \bar{B} D$
(c) $\quad(B+B C)(B+\bar{B} C)(B+D)=B(1+C)(B+C)(B+D)$
$=B(B+C)(B+D)=(B B+B C)(B+D)=(B+B C)(B+D)$
$=B(1+C)(B+D)=B(B+D)=B B+B D=B+B D=B(1+D)=B$
(d) $\quad A B C D+A B(\overline{C D})+(\overline{A B}) C D=A B C D+A B(\bar{C}+\bar{D})+(\bar{A}+\bar{B}) C D$
$=A B C D+A B \bar{C}+A B \bar{D}+\bar{A} C D+\bar{B} C D$
$=C D(A B+\bar{A}+\bar{B})+A B \bar{C}+A B \bar{D}=C D(B+\bar{A}+\bar{B})+A B \bar{C}+A B \bar{D}$
$=C D(1+\bar{A})+A B \bar{C}+A B \bar{D}=C D+A B \bar{C}+A B \bar{D}=C D+A B(\overline{C D})=\boldsymbol{C D}+\boldsymbol{A B}$
(e) $\quad A B C[A B+\bar{C}(B C+A C)]=A B A B C+A B C \bar{C}(B C+A C)$
$=A B C+0(B C+A C)=A B C$
20. First develop the Boolean expression for the output of each gate network and simplify.
(a) See Figure 4-4.

(b) See Figure 4-5.

(c) See Figure 4-6.

(d) See Figure 4-7.


```
X=A}\overline{\boldsymbol{B}}+\boldsymbol{AC}\overline{\boldsymbol{D}}\mathrm{ No further simplification is possible.
```


## Section 4-6 Standard Forms of Boolean Expressions

21. (a) $(A+B)(C+\bar{B})=A C+B C+B \bar{B}+A \bar{B}=\boldsymbol{A C}+\boldsymbol{B C}+\boldsymbol{A} \overline{\boldsymbol{B}}$
(b) $\quad(A+\bar{B} C) C=A C+\bar{B} C C=A C+\bar{B} C$
(c) $(A+C)(A B+A C)=A A B+A A C+A B C+A C C=A B+A C+A B C+A C C$ $=(A B+A C)(1+C)=A B+A C$
22. (a) $A B+C D(A \bar{B}+C D)=A B+A \bar{B} C D+C D C D=A B+A \bar{B} C D+C D$
$=A B(A \bar{B}+1) C D=\boldsymbol{A B}+\boldsymbol{C D}$
(b) $\quad A B(\bar{B} \bar{C}+B D)=A B \bar{B} \bar{C}+A B B D=0+A B D=A B D$
(c) $A+B[A C+(B+\bar{C}) D]=A+A B C+(B+\bar{C}) B D$
$=A+A B C+B D+B \bar{C} D=A(1+B C)+B D+B \bar{C} D=A+B D(1+\bar{C})$
$=A+B D$
23. (a) The domain is $A, B, C$

The standard SOP is: $\quad A \bar{B} C+A \bar{B} \bar{C}+A B C+\bar{A} B C$
(b) The domain is $A, B, C$

The standard sOP is: $\quad A B C+A \bar{B} C+\bar{A} \bar{B} C$
(c) The domain is $A, B, C$

The standard sop is: $\quad A B C+A B \bar{C}+A \bar{B} C$
24. (a) $A B+C D=A B C D+A B C \bar{D}+A B \bar{C} D+A B \bar{C} \bar{D}+\bar{A} \bar{B} C D+\bar{A} B C D+A \bar{B} C D$
(b) $\quad A B D=A B C D+A B \bar{C} D$
(c) $\quad A+B D=A \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} D+A \bar{B} C \bar{D}+A \bar{B} C D+A B \bar{C} \bar{D}+A B \bar{C} D$

$$
+A B C \bar{D}+A B C D+\bar{A} B \bar{C} D+\bar{A} B C D
$$

25. (a) $A \bar{B} C+A \bar{B} \bar{C}+A B C+\bar{A} B C: 101+100+111+011$
(b) $\quad A B C+A \bar{B} C+\bar{A} \bar{B} C: 111+101+001$
(c) $A B C+A B \bar{C}+A \bar{B} C: 111+110+101$
26. (a) $A B C D+A B C \bar{D}+A B \bar{C} D+A B \bar{C} \bar{D}+\bar{A} \bar{B} C D+\bar{A} B C D+A \bar{B} C D$ :

$$
1111+1110+1101+1100+0011+0111+1011
$$

(b) $\quad A B C D+A B \bar{C} D: \quad 1111+1101$
(c) $A \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} D+A \bar{B} C \bar{D}+A \bar{B} C D+A B \bar{C} \bar{D}+A B \bar{C} D$
$+A B C \bar{D}+A B C D+\bar{A} B \bar{C} D+\bar{A} B C D:$
$1000+1001+1010+1011+1100+1101+1110+1111+0101+$
0111
27.
(a) $(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(\bar{A}+\bar{B}+C)$
(b) $\quad(A+B+C)(A+\bar{B}+C)(A+\bar{B}+\bar{C})(\bar{A}+B+C)(\bar{A}+\bar{B}+C)$
(c) $\quad(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(A+\bar{B}+\bar{C})(\bar{A}+B+C)$
28. (a) $(A+B+C+D)(A+B+C+\bar{D})(A+B+\bar{C}+D)(A+\bar{B}+C+D)(A+\bar{B}+C+\bar{D})$

$$
(A+\bar{B}+\bar{C}+D)(\bar{A}+B+C+D)(\bar{A}+B+C+\bar{D})(\bar{A}+B+\bar{C}+D)
$$

(b) $\quad(A+B+C+D)(A+B+C+\bar{D})(A+B+\bar{C}+D)(A+B+\bar{C}+\bar{D})$

$$
\begin{aligned}
& (A+\bar{B}+C+D)(A+\bar{B}+C+\bar{D})(A+\bar{B}+\bar{C}+D)(A+\bar{B}+\bar{C}+\bar{D})(\bar{A}+B+C+D) \\
& (\bar{A}+B+C+\bar{D})(\bar{A}+B+\bar{C}+D)(\bar{A}+B+\bar{C}+\bar{D})(\bar{A}+\bar{B}+C+D)(\bar{A}+\bar{B}+\bar{C}+D)
\end{aligned}
$$

(c)

$$
\begin{aligned}
& (A+B+C+D)(A+B+C+\bar{D})(A+B+\bar{C}+D)(A+B+\bar{C}+\bar{D}) \\
& \quad(A+\bar{B}+C+D)(A+\bar{B}+\bar{C}+D)
\end{aligned}
$$

## Section 4-7 Boolean Expressions and Truth Tables

29. (a)
(a)

| $A$ | $B$ | $C$ | $X$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

(b)

| $X$ | $Y$ | $Z$ | $Q$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

30. 

(a)

| $A$ | $B$ | $C$ | $D$ | $X$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |


| $A$ | $B$ | $C$ | $D$ | $X$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |

(a) $\bar{A} B+A B \bar{C}+\bar{A} \bar{C}+A \bar{B} C=\bar{A} B C+\bar{A} B \bar{C}+A B \bar{C}+\bar{A} \bar{B} \bar{C}+A \bar{B} C$
(b) $\quad \bar{X}+Y \bar{Z}+W Z+X \bar{Y} Z=\bar{W} \bar{X} \bar{Y} \bar{Z}+\bar{W} \bar{X} \bar{Y} Z+\bar{W} \bar{X} Y \bar{Z}+\bar{W} \bar{X} Y Z$
$+\bar{W} X \bar{Y} Z+\bar{W} X Y \bar{Z}+W \bar{X} \bar{Y} \bar{Z}+W \bar{X} \bar{Y} Z$
$+W \bar{X} Y \bar{Z}+W \bar{X} Y Z+W X \bar{Y} Z+W X Y \bar{Z}+W X Y Z$

| $A$ | $B$ | $C$ | $X$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |


| $W$ | $X$ | $Y$ | $Z$ | $Q$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |



| $A$ | $B$ | $C$ | $X$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

(b)

| $A$ | $B$ | $C$ | $D$ | $X$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

33. 

(a)

| $A$ | $B$ | $C$ | $X$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

(b)

| $A$ | $B$ | $C$ | $D$ | $X$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

34. (a) $X=\bar{A} \bar{B} C+A \bar{B} \bar{C}+A \bar{B} C+A B C$

$$
X=(A+B+C)(A+\bar{B}+C)(A+\bar{B}+\bar{C})(\bar{A}+\bar{B}+C)
$$

(b) $\quad X=A B \bar{C}+A \bar{B} C+A B C$

$$
x=(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(A+\bar{B}+\bar{C})(\bar{A}+B+C)
$$

(c) $\quad x=\bar{A} \bar{B} \bar{C} \bar{D}+\overline{A B} \bar{C} D+\bar{A} \bar{B} C D+\bar{A} B \bar{C} D+\bar{A} B C \bar{D}+A \bar{B} \bar{C} D+A B \bar{C} \bar{D}$

$$
\begin{gathered}
X=(A+B+\bar{C}+D)(A+\bar{B}+C+D)(A+\bar{B}+\bar{C}+\bar{D})(\bar{A}+B+C+D)(\bar{A}+B+\bar{C}+D) \\
(\bar{A}+B+\bar{C}+\bar{D})(\bar{A}+\bar{B}+C+\bar{D})(\bar{A}+\bar{B}+\bar{C}+D)(\bar{A}+\bar{B}+\bar{C}+\bar{D})
\end{gathered}
$$

(d) $\quad X=\bar{A} \bar{B} C \bar{D}+\bar{A} B \bar{C} \bar{D}+\bar{A} B \bar{C} D+\bar{A} B C D+A \bar{B} C D+A B \bar{C} \bar{D}+A B C D$

$$
\begin{gathered}
X=(A+B+C+D)(A+B+C+\bar{D})(A+B+\bar{C}+\bar{D})(A+\bar{B}+\bar{C}+D)(\bar{A}+B+C+D) \\
(\bar{A}+B+C+\bar{D})(\bar{A}+B+\bar{C}+D)(\bar{A}+\bar{B}+C+\bar{D})(\bar{A}+\bar{B}+\bar{C}+D)
\end{gathered}
$$

## Section 4-8 The Karnaugh Map

35. See Figure 4-8.
36. See Figure 4-9.
37. See Figure 4-10.

38. See Figure 4-
(a) $X=\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+\Lambda \bar{B} C$
(b) $X=A C(\bar{B}+C)=A C+A \overline{B C}$

(c) $X=\bar{A}(B C+B \bar{C})+A(B C+B \bar{C})$
(d) $X=\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}+\bar{A} B \bar{C}+A B \bar{C}$
$=\bar{A} B C+\bar{A} B \bar{C}+A B C+A B \bar{C}$


FIGURE 4-11
(a) $X=\bar{A} \bar{B} \bar{C}+A \bar{B} C+\bar{A} B C+\Lambda B \bar{C}$
(b) $X=A C[\bar{B}+B(B+\bar{C})]$
$=A \bar{B} C+A B C+\Lambda B C \bar{C}=\Lambda \overline{B C}+A B C$


No simplification
(c) $X=D E \bar{F}+\bar{D} E \bar{F}+\bar{D} \overline{E F}$


$$
X=\bar{D} \bar{F}+E \bar{F}
$$

40. (a) $A B+A \bar{B} C+A B C=A B(C+\bar{C})+A \bar{B} C+A B C$

$$
\begin{aligned}
& =A B C+A B \bar{C}+A \bar{B} C+A B C \\
& =A B C+A \bar{B} C+A B \bar{C}
\end{aligned}
$$

(b) $\quad A+B C=A(B+\bar{B})(C+\bar{C})+(\bar{A}+A) B C=(A B+A \bar{B})(C+\bar{C})+(\bar{A}+A) B C$

$$
=A B C+A B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+\bar{A} B C+A B C
$$

$$
=A B C+A B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+\bar{A} B C
$$

(c) $\quad A \bar{B} \bar{C} D+A C \bar{D}+B \bar{C} D+\bar{A} B C \bar{D}$

$$
\begin{aligned}
& =A \bar{B} \bar{C} D+A(B+\bar{B}) C D+(A+\bar{A}) B \bar{C} D+\bar{A} B C \bar{D}= \\
& =A \bar{B} \bar{C} D+A B C \bar{D}+A \bar{B} C \bar{D}=A B \bar{C} D+\bar{A} B \bar{C} D+\bar{A} B C \bar{D}
\end{aligned}
$$

(d) $A \bar{B}+A \bar{B} \bar{C} D+C D+B \bar{C} D+A B C D$
$=A \bar{B}(C+\bar{C})(D+\bar{D})+A \bar{B} \bar{C} D+(A+\bar{A})(B+\bar{B}) C D+(A+\bar{A}) B \bar{C} D+A B C D$
$=A \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} D+A B C \bar{D}+A B C D+A \bar{B} \bar{C} D+A B C D+A \bar{B} C D+\bar{A} B C D$

$$
+\bar{A} \bar{B} C D+A B \bar{C} D+\bar{A} B \bar{C} D+A B C D
$$

$=A \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} D+A B C \bar{D}+A B C D+A \bar{B} C D+\bar{A} B C D+\bar{A} \bar{B} C D+A B \bar{C} D+\bar{A} B \bar{C} D$
$=\bar{A} \bar{B} C D+\bar{A} B \bar{C} D+\bar{A} B C D+A \bar{B} C \bar{D}+A \bar{B} \bar{C} D+A \bar{B} C D+A B \bar{C} D+A B C D+A B C \bar{D}$
41. See Figure 4-13.


43. Plot the 1's from Figure 4-62 in the text on the map as shown in Figure 4-15 and simplify.


$$
X=\bar{B}+C
$$

44. Plot the 1's from F: Figure 4-16 and simplify.

FIGURE 4-15
xt on the map as shown in nap as shown in

45.

FIGURE 4-16


$$
X=\bar{A} \bar{B} \bar{C} D+C \bar{D}+B C+A \bar{D}
$$



FIGURE 4-17

## Section 4-10 Karnaugh Map POS Minimization

46. See Figure 4-18.
(a) $X=(A+B+C)(\bar{A}+\bar{B}+\bar{C})(A+\bar{B}+C)$
(b) $W=(X+\bar{Y})(\bar{X}+Z)(X+\bar{Y}+\bar{Z})(\bar{X}+\bar{Y}+Z)$

$W=(X+\bar{Y})(\bar{X}+Z)(\bar{Y}+Z)$
47. 

(a)


$$
X=(A+\bar{B}+C+\bar{D})(\bar{A}+B+\bar{C}+D)(\bar{A}+\bar{B}+\bar{C}+\bar{D})
$$

(b)


$$
Q=(W+\bar{Z})(W+X)(\bar{Y}+\bar{Z})(X+\bar{Y})
$$

FIGURE 4-19
48. See Figure 4-20.
49. See Figure 4-

FIGURE 4-20


50. See Figure 4- | $X=(A+C+D)(A+\bar{B}+C)(\bar{A}+B+\overline{D)}$ |
| :---: | :---: |
| $(B+\bar{C}+\bar{D})(\bar{A}+\bar{B}+\bar{C}+D)$ |

(a) $(A+\bar{B})(A+\bar{C})(\bar{A}+\bar{B}+C)$

$X=A C+\bar{B} \bar{C}$
(b) $(\bar{A}+B)(\bar{A}+\bar{B}+\bar{C})(B+\bar{C}+D)(A+\bar{B}+C+\bar{D})$


$$
X=\bar{A} \bar{C} \bar{D}+A B \bar{C}+\overline{A B D}+\overline{A B C}
$$

FIGURE 4-22

## Section 4-11 Five-Variable Karnaugh Maps

51. See Figure 4-23.


$$
X=\bar{A} \bar{B} \bar{C} \bar{D} \bar{E}+\bar{A} B C \bar{D} E+A B \bar{C} \bar{D} \bar{E}+\bar{A} \bar{B} D E+\bar{A} B D \bar{E}+\bar{B} \bar{C} D E+A B \bar{C} D
$$

52. 

FIGURE 4-23


No simplification is possible
FIGURE 4-24

## Section 4-12 VHDL

53. entity AND OR is
port ${ }^{-}(A, B, C, D, E, F, G, H, I: ~ i n ~ b i t ; ~ X: ~ o u t ~ b i t) ; ~$
end entity AND_OR;
architecture Lōgic of AND_OR is
begin
$X<=(A$ and $B$ and $C$ ) or ( $D$ and $E$ and $F$ ) or ( $G$ and $H$ and $I$ );
end architecture Logic;
54. The VHDL program:
```
entity SOP is
    port (A, B, C: in bit; X: out bit);
end entity SOP;
architecture Logic of SOP is
begin
    Y <= (A and not B and C) or (not A and not B and C) or
    (A and not B and not C) or (not A and B and C);
end architecture Logic;
```


## Digital System Application

55. An LED display is more suitable for low-light conditions because LEDs emit light and LCDs do not.
56. The codes 1010, 1011, 1100, 1101, 1110, and 1111 correspond to nondecimal digit values and are not used in the BCD code.
57. The standard SOP expression for segment $b$ is:
$b=\bar{D} \bar{C} \bar{B} \bar{A}+\bar{D} \bar{C} \bar{B} A+\bar{D} \bar{C} B \bar{A}+\bar{D} \bar{C} B A+\bar{D} C \bar{B} \bar{A}+\bar{D} C B A+D \bar{C} \bar{B} \bar{A}+D \bar{C} \bar{B} A$
This expression is minimized in Figure 4-25.
There are 6 fewer gates and one fewer inverters as a result of minimization.

$b=\bar{C}+\bar{B} \bar{A}+B A$
58. 

 The minimum expression requires two 2 -input AND gates, one 3 -input OR gate, and 3 inverters.

FIGURE 4-25


FIGURE 4-
~

The standard SOP expression for segment $d$ is:
$d=\bar{D} \bar{C} \bar{B} \bar{A}+\bar{D} \bar{C} B \bar{A}+\bar{D} \bar{C} B A+\bar{D} C \bar{B} A+\bar{D} C B \bar{A}+D \bar{C} \bar{B} \bar{A}+D \bar{C} \bar{B} A$
This expression is minimized in Figure 4-27.
There are 3 fewer gates and 1 fewer inverters as a result of minimization.


$$
d=D+\bar{C} \bar{A}+\bar{C} B+B \bar{A}+C \bar{B} A
$$

The standard expression requires seven FIGURE 4- ne 7-input OR gate, and 4 inverters.
The minimum expression requires three 2 -input AND gates, one 3 -input AND gate, one 5 -input OR gate, and 3 inverters.

FIGURE 4-27

The standard SOP expression for segment $f$ is:
$f=\bar{D} \bar{C} \bar{B} \bar{A}+\bar{D} C \bar{B} \bar{A}+\bar{D} C \bar{B} A+\bar{D} C B \bar{A}+D \bar{C} \bar{B} \bar{A}+D \bar{C} \bar{B} A$
This expression is minimized in Figure 4-29.
There are 3 fewer gates and 2 fewer inverters as a result of minimization.


$$
f=C \bar{A}+\bar{B} \bar{A}+C \bar{B}+D
$$

The standard expression requires six FIGURE 4- e 6-input OR gate, and 4 inverters.
The minimum expression requires threc 2 -input AND gates, one 4 -input OR gate, and 2 inverters.

FIGURE 4-29
minimization.


$$
g=\bar{C} B+B \bar{A}+C \bar{B}+D
$$

The standard expression requires: FIGURE 4- es, one 7-input OR gate, and 4 inverters. ○ 0 The minimum expression requires three 2 -input AND gates, one 4-input OR gate, and 3 inverters.

use the inverter output to drive the segment.
60. See Figure 4-31. The POS implementation requires one 3-input OR gate, one 4-input OR gate, one 2 -input AND gate, and 2 inverters. The SOP implementation (see Figure 4-55 in text) requires two 2 -input AND gates, one 4-input OR gate, and 2 inverters.
61. See Figure 4 input OR gate


FIGURE 4-31
segment b requires two 3nverters.


See Figure 4OR gate, and

FIGURE 4-32


See Figure 4 input OR gate inverters.


FIGURE 4-
See Figure 4-35. The POS implementation of segment $e$ requires one 2input OR gate, one 2-input AND gate, and 2 inverters.


See Figure 4-37. The POS implementation of segment $g$ requires two 3input OR gates, one
2-input AND gate, and 3 inverters.


## Multisim Troubleshooting Practice

63. Input $A$ inverter output open.
64. Input $A$ of segment $e$ OR gate open.
65. Segment b OR gate output open.

## CHAPTER 5

## COMBINATIONAL LOGIC ANALYSIS

## Section 5-1 Basic Combinational Logic Circuits

1. See Figure 5-1.


FIGURE 5-1
2. (a)
(b) $\quad X=\overline{\bar{A} B+\bar{A} C D+D B \bar{D}}$
3. (a) $X=A B B$
(b) $\quad X=A B+B$
(c) $\quad X=\bar{A}+B$
(d) $\quad X=(A+B)+A B$
(e) $\quad X=\overline{\bar{A} B C}$
(£) $\quad X=(A+B)(\bar{B}+C)$
4. See Figure 5-2 for the circuit corresponding to each expression.
(a) $X=(A+B)(C+D)=A C+A D+B C+B D$
(b) $\quad X=\overline{\overline{\overline{A B} C}+\overline{C D}}=(\overline{A B} C)(C D)=(\bar{A}+\bar{B}) C C D=\bar{A} C D+\bar{B} C D$
(c) $\quad X=(A B+C) D+E=A B D+C D+E$
(d) $\quad X=\overline{(\overline{\overline{\bar{A}+B}+B)}(\overline{B C})+D}=(\overline{\overline{\bar{A}+B}})(\overline{B C})+D=\bar{A}+B+B C+D=\bar{A}+B+D$
(e) $\quad X=(\overline{\overline{\overline{A B}}+\bar{C}) D}+\bar{E}=(A B+\bar{C}) D+\bar{E}=A B D+\bar{C} D+\bar{E}$
$x=(\overline{\overline{\overline{A B}}+\overline{\overline{C D}})(\overline{\overline{E F}}+\overline{\overline{G H}})}=\overline{(A B+C D)(E F+G H)}=(\overline{A B+C D})+(\overline{E F+G H})$
$=(\overline{A B})(\overline{C D})+(\overline{E F})(\overline{G H})$
$(\bar{A}+\bar{B})(\bar{C}+\bar{D})+(\bar{E}+\bar{F})(\bar{G}+\bar{H})=\bar{A} \bar{C}+\bar{B} \bar{C}+\bar{A} \bar{D}+\bar{B} \bar{D}+\bar{E} \bar{G}+\bar{F} \bar{G}+\bar{E} \bar{H}+\bar{F} \bar{H}$
$+A B$
(d) $\quad X=(A+B)$

| $A$ | $B$ | $X$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

(e)

|  | $X=\overline{\bar{A} B C}$ |  |  |
| :---: | :---: | :---: | :---: |
| $A$ | $B$ | $C$ | $X$ |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

(c)

| $X$ | $\bar{A}+B$ |  |
| :---: | :---: | :---: |
| A | B | $X$ |
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

## http://ebook29.blogspot.com

6. 

(a) \begin{tabular}{c}
$\quad X=(A+B)(C+D)$ <br>

$\qquad$| $A$ | $B$ | $C$ | $D$ | $X$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

\end{tabular}

(b) \(\begin{gathered}X=\overline{\overline{A B C}}+\overline{C D} <br>
<br>

\)| $A$ | $B$ | $C$ | $D$ | $X$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |\end{gathered}

(d) $\quad X=$
(c)
$X=(A B+C) D+E$

| $X A$ | $B$ | $C$ | $D$ | $E$ | $X$ | $A$ | $B$ | $C$ | $D$ | $E$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 |  |  |  |  |  |  |  |  |

$\overline{\overline{\overline{\overline{\bar{A}+B})(\overline{B C}})+D}}$

| $A$ | $B$ | $C$ | $D$ | $X$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |



| (f) | $X=$ |  | $(A B+C D)(E F+G H)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | $E$ | $F$ | G | H | I |
| 0 | X | 0 | X | X | X | X | X | 1 |
| X | 0 | 0 | X | X | X | X | X | 1 |
| 0 | X | X | 0 | X | X | X | X | 1 |
| X | 0 | X | 0 | 0 | X | X | X | 1 |
| X | X | X | X | 0 | X | 0 | X | 1 |
| X | X | X | X | X | 0 | - | X | 1 |
| X | X | X | X | 0 | X | X | 0 | 1 |
| X | X | X | X | X | 0 | X | 0 | 1 |
| For all other entries $X=$ 0 . $\mathrm{X}=\text { don't care }$ <br> An abbreviated table is shown because there are 256 combinations. |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

7. $X=\overline{A \bar{B}+\bar{A} B}=(\overline{A \bar{B}})(\overline{\bar{A} B})=(\bar{A}+B)(A+\bar{B})$

## Section 5-2 Implementing Combinational Logic

8. 

## See Figure 5-3.


9. See Figure 5-4.

(c)

(d)

(e)

(f)

FIGURE 5-4
10. See Figure 5-5.

12. $X=\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} C D+\bar{A} B \bar{C} \bar{D}+A \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} D+A \bar{B} C \bar{D}+A \bar{B} C D+A B C D$ See Figure 5-7.

\(\left.\begin{array}{|lll|l|}A \& B \& C \& X <br>
\hline 0 \& 0 \& 0 \& 0 <br>
0 \& 0 \& 1 \& 0 <br>
0 \& 1 \& 0 \& 0 <br>
0 \& 1 \& 1 \& 0 <br>
1 \& 0 \& 0 \& 0 <br>
1 \& 0 \& 1 \& 0 <br>
1 \& 1 \& 0 \& 1 <br>
1 \& 1 \& 1 \& 1 <br>

\hline\end{array}\right]\)| $A$ | $B$ | $X$ |
| :---: | :---: | :---: |
|  | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Since $C$ is a don't care variable, the output depends only on $A$ and $B$ as shown by the two-variable truth table above which is implemented with the AND gate in Figure 5-8.


FIGURE 5-8
14. $\quad X=(\overline{\overline{\overline{A B}})(\overline{\overline{B+C}})}+C=(A B)(B+C) C=(A B)(B+C) \bar{C}=(\bar{A}+\bar{B})(\bar{B} \bar{C}) \bar{C}$
$=(\bar{A} \bar{B} \bar{C}+\bar{B} \bar{C}) \bar{C}=\bar{A} \bar{B} \bar{C}+\bar{B} \bar{C}=\bar{B} \bar{C}(A+1)=\bar{B} \bar{C}$
See Figure


FIGURE 5-9

| $A$ | $B$ | $C$ | $X$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

15. (a) $X=A B+\bar{B} C$

No simplification. See Figure 5-10.
(b) $\quad X=A(B+\bar{C}$


No simplificatlon. Equallon Can ve expressed in another form, as indicated in Figure 5-11.


FIGURE 5-11
(c) $x=A B+A B-A(D+D)=A$

A direct connection from input to output. No gates required.
(d) $\quad X=\overline{A B C}+B(E F+\bar{G})=\bar{A}+\bar{B}+\bar{C}+B E F+B \bar{G}$
$=\bar{A}+\bar{C}+B E F+\bar{B}+\bar{G}=\overline{\boldsymbol{A}}+\overline{\boldsymbol{C}}+\overline{\boldsymbol{B}}+\boldsymbol{E F}+\overline{\boldsymbol{G}}$
See Figure 5-12.
(e) $\quad X=A(B C(A)$

FIGURE 5-12
$=A B C+A B C+A B C+A B C D=A B C+A D C(\perp+D)$
$=A B C+A B C=A B C$
See Figure 5-13.


FIGURE 5-13
(f)
$X=B(C \bar{D} E+\bar{E} F G)(A B+C)=(B C D E+B \bar{E} F G)(\bar{A}+\bar{B}+C)$
$=\bar{A} B C \bar{D} E+\bar{A} B \bar{E} F G+B C \bar{D} E+B C \bar{E} F G$
$=B C \bar{D} E(\bar{A}+1)+\bar{A} B \bar{E} F G+B C \bar{E} F G$
$=\boldsymbol{B C} \overline{\boldsymbol{D}} \boldsymbol{E}+\overline{\boldsymbol{A}} \boldsymbol{B} \overline{\boldsymbol{E} F \boldsymbol{F}}+\boldsymbol{B C} \overline{\boldsymbol{E} F \boldsymbol{F}}$
See Figure 5-14.
16. (a) $X=\bar{A} B+C$

$=\bar{A} B+C D+A B+A B E=A(B+B)+C D+\bar{A} \bar{B} \bar{E}$
$=\bar{A}+\bar{A} \bar{B} \bar{E}+C D=\bar{A}(1+\bar{B} \bar{E})+C D=\overline{\boldsymbol{A}}+\boldsymbol{C D}$

See Figure 5-15.


$$
=\bar{A}+B \bar{C} \bar{D}+\bar{F}+D \bar{E}
$$

See Figure 5-16.

(c) $\quad X=\bar{A}(B+\bar{C}(D+E))=\bar{A}(B+\bar{C} D+\bar{C} E)=\bar{A} \boldsymbol{B}+\bar{A} \bar{C} D+\bar{A} \bar{C} \boldsymbol{E}$

See Figure 5-17

The SOP expression
are shown in Figure 5-18.

(a) $X=(A+B)(C+D)=A C+A D+B C+B D$
(b) $\quad X=\overline{\overline{\overline{A B} C}}+\overline{\overline{C D}}=(\overline{A B} C)(C D)=(\bar{A}+\bar{B}) C C D=\overline{\boldsymbol{A} C D}+\overline{\boldsymbol{B}} \boldsymbol{C D}$
(c) $X=(A B+C) D+E=A B D+C D+E$
(d) $\quad X=(\overline{\bar{A}+B})(\overline{B C})+D=(\overline{\bar{A}+B})(\overline{B C})+D=\bar{A}+B+B C+D$

$$
=\bar{A}+B(1+C)+D=\overline{\boldsymbol{A}}+\boldsymbol{B}+\boldsymbol{D}
$$

(e) $\quad X=(\overline{\overline{A B}}+\bar{C}) D+\bar{E}=(A B+\bar{C}) D+\bar{E}=\boldsymbol{A B D}+\overline{\boldsymbol{C}} \boldsymbol{D}+\overline{\boldsymbol{E}}$
(£) $\quad X=(\overline{\overline{A B}}+\overline{\overline{C D}})(\overline{\overline{E F}}+\overline{\overline{G H}})=(\overline{A B+C D)(E F+G H})=(\overline{A B+C D})+(\overline{E F+G H G})$
$=(\overline{A B})(\overline{C D})+(\overline{E F})(\overline{G H})=(\bar{A}+\bar{B})(\bar{C}+\bar{D})+(\bar{E}+\bar{F})(\bar{G}+\bar{H})$
$=\bar{A} \bar{C}+\overline{B C}+\overline{A D}+\bar{B} \bar{D}+\overline{\boldsymbol{E} G}+\overline{\boldsymbol{F} \boldsymbol{G}}+\overline{\boldsymbol{E} \boldsymbol{H}}+\overline{\boldsymbol{F} \boldsymbol{H}}$


FIGURE 5-18

## Section 5-3 The Universal Property of NAND and NOR Gates

18. See Figure 5-19.


See Figure 5-20.
20.

(a)
(b)

FIGURE 5-21
21. See Figure 5-22.

22.
(a) $X=A B C$

See Figure 5-23.


See Figure 5-25.


FIGURE 5-25
(b) $\quad X=\overline{A B C}$

See Figure 5-24.


FIGURE 5-24
(d) $X=A+B+C$

See Figure 5-26.


FIGURE 5-26
(e) $\quad X=\overline{A B}+\overline{C D}$

See Figure 5-27.


FIGURE 5-28
(g)


FIGURE 5-29
23.
(a) $X=A B C$

See Figure 5-30.

(c)

See Figure 5-32.


FIGURE 5-32
(e)
$X=A B+C D$
See Figure 5-34.
(f)


FIGURE 5-34

See Figure 5-35.
(g) $\quad X=A B[C(\overline{D E}+\overline{A B})$

See Figure 5-36.
FIGURE 5-35

24. (a) $X=A B$

See Figure 5-37.


See Figure 5-39.

(b) $\quad X=A+B$

See Figure 5-38.


See Figure 5-40.

(e)

$$
X=A+B+C
$$

$$
\begin{aligned}
& X=A+B+C \\
& \text { See Figure } 5-41
\end{aligned}
$$



$$
\begin{align*}
& X=A B C D  \tag{f}\\
& \text { See Figure 5-42. }
\end{align*}
$$



> See Figure 5-43.


See Figure 5-44.

25.
(a) $X=A B+\bar{B} C$
See Figure 5-45.

(b) $X=A(B+\bar{C})=\boldsymbol{A B}+A \bar{C}$
See Figure 5-46.

See Figure 5-47.
(d) $\bar{C}+B E F+B \bar{G}$

See Figure 5-48.

(e) $\quad X=A[B C(A+B+C+D)]=A B C A+A B C B+A B C C+A B C D$
$=A B C+A B C+A B C+A B C D+A B C(1+D)=A B C$
See Figure 5-49.
(f)

$=B(\bar{A} C \bar{D} E+\bar{A} \bar{E} F G+\bar{B} C \bar{D} E+\bar{B} \bar{E} F G+C \bar{D} E+C \bar{E} F G)$
$=\bar{A} B \bar{E} F G+B \bar{B} \bar{E} F G+B C \bar{D} E+B C \bar{E} F G$
$=\bar{A} \boldsymbol{B} \overline{\boldsymbol{E}} \boldsymbol{F G}+\boldsymbol{B C} \overline{\boldsymbol{D}} \boldsymbol{E}+\boldsymbol{B C} \overline{\boldsymbol{E}} \boldsymbol{F} \boldsymbol{G}$
See Figure 5-50.

26. $x=\overline{\bar{A}+\bar{B}+B}=A B \bar{B}=0$

The output $X$ is always Low.
27. $X=(\overline{\overline{A B}) B}=A+\bar{B}+\bar{B}=\boldsymbol{A}+\overline{\boldsymbol{B}}$

See Figure 5-51.


$$
X=A B C+A \bar{B} \bar{C}+A \bar{B} C
$$

See Figure 5-52.


FIGURE 5-52
29. $X$ is HIGH wh
$X$ is HIGH wher
$X=A \bar{B} \bar{C}$
See Figure 5-53.

30. See Figure 5-54
31. The output pu maximum is not


FIGURE 5-55

## Section 5-6 Combinational Logic with VHDL

32. entity Circuit5 51b is
port (A, $\bar{B}, C, D:$ in bit; $X:$ out bit);
end entity Circuit5_51b;
architecture LogicFunction of Circuit5_51b is
begin
$X<=\operatorname{not}($ not $A$ and $B)$ or (not $A$ and $C$ and $D$ ) or $(D$ and $B$ and
not D)
end architecture LogicFunction;
33. (e) entity Circuit5 52e is
port (A, B, C: in bit; X: out bit);
end entity Circuit5_52e;
architecture LogicFunction of Circuit5_52e is begin
$X$ $<=($ not $A$ and $B)$ or $B$ or ( $B$ and not $C$ ) or (not $A$ and not $C$ ) or
( $B$ and not $C$ ) or not $C$;
end architecture LogicFunction;
(f) entity Circuit5_52f is
port (A, $\mathrm{B}, \mathrm{C}:$ in bit; $\mathrm{X}:$ out bit);
end entity Circuit5 52f;
architecture LogicFunction of Circuit5_52f is
begin
$X<=(A$ or $B)$ and (not $B$ or $C)$;
end architecture Logic Function;
34. See Figure 5-56 for input/output, gate, and signal labeling.

--Program for the logic circuit in Figure 5-56 (textbook Figure 5-
53 (d))
entity (Circuit5_53d is
port (IN1, ${ }^{-}$IN2, IN3, IN4: in bit; OUT: out bit);
end entity Circuit5_53d;
architecture LogicOperation of Circuit5_53d is
--Component declaration for inverter
component Inverter is
port (A: in bit; $X:$ out bit);
end component Inverter;
--Component declaration for NOR gate
component NORgate is
port (A, B: in bit; $\mathrm{X}:$ out bit);
end component NOR gate;
--Component declaration for NAND gate
component NANDgate is
port (A, B: in bit; X: out bit);
end component NANDgate;
signal G1OUT, G2OUT, G3OUT, G4OUT, G5OUT: bit;
begin
G1: Inverter port map ( $\mathrm{A}=>$ IN1, $\mathrm{X}=>\mathrm{G1OUT}$ );
```
    G2: NORgate port map (A => G1OUT, B => IN2, X => G2OUT);
    G3: NAND gate port map (A => IN2, B => IN3, X => G3OUT);
    G4: NANDgate port map (A => G2OUT, B => G3OUT, X => G4OUT);
    G5: NORgate port map (A => G4OUT, B => IN4, X => G5OUT);
    G6: Inverter port map (A => G5OUT, X => OUT);
end architecture LogicOperation;
```

35. See Figure 5-57 for input/output, gate, and signal labeling.

--Program for the logic circuit in Figure 5-57 (textbook Figure 5-
53 (f))
entity Circuit5_53f is port (IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8: in bit; OUT:
out bit);
end entity Circuit5_53f;
architecture LogicFunction of Circuit5_53f is
--Component declaration for NAND gate
component NANDgate is
port (A, B: in bit; X: out bit);
end component NANDgate;
signal G1OUT, G2OUT, G3OUT, G4OUT, G5OUT, G6OUT: bit;
begin
G1: NANDgate port map ( $\mathrm{A}=>$ IN1, $\mathrm{B}=>$ IN2, $\mathrm{X}=>\mathrm{G1OUT}$ );
G2: NANDgate port map (A => IN3, B => IN4, X => G2OUT);
G3: NANDgate port map ( $A=>$ IN5, $B=>$ IN6, $X=>$ G3OUT);
G4: NANDgate port map ( $\mathrm{A}=>$ IN7, $\mathrm{B}=>$ IN8, $\mathrm{X}=>\mathrm{G} 40 U T$ );
G5: NANDgate port map ( $\mathrm{A}=>$ G1OUT, $B=>$ G2OUT, $X=>$ G5OUT);
G6: NANDgate port map ( $A=>$ G3OUT, $B=>G 4 O U T, X=>G 6 O U T$ );
G7: NANDgate port map (A => G5OUT, B => G6OUT, X => OUT);
end architecture LogicFunction;
36. $X=\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} \bar{C}+A B \bar{C}+A B C$

This is the SOP expression for the function in Table 5-8 of the
textbook. The following program applies the data flow approach for this logic function.
--Program for Table5_8 SOP logic
entity Table5_8 is
port (A, B, C: in bit; $X:$ out bit);
end entity Table5_8;
architecture Logicoperation of Table5_8 is
begin
$X$ $<=$ (not $A$ and not $B$ and not $C$ ) or (not $A$ and $B$ and not $C$ ) or ( $A$ and not $B$ and not $C$ ) or ( $A$ and $B$ and not $C$ ) or ( $A$
and $B$ and $C$ );
end architecture LogicOperation;
37. --Program for textbook Figure5_64 data flow approach
entity Fig5_64 is
port $\overline{\text { ( }}$, $B, C, D, E:$ in bit; $X:$ out bit);
end entity Fig5_64;
architecture DaEaFlow of Fig5 64 is begin
$X$ $<=(A$ and $B$ and $C$ ) or ( $D$ and not $E$ )
end architecture DataFlow;
See Figure 5-58 for the circuit in textbook Figure 5-64 modified for the structural approach.

--Program for textbook Figure5_64 structural approach entity Fig5 64 is
port (IN1, IN2, IN3, IN4, IN5: in bit; OUT: out bit);
end entity Fig5_64;
architecture Structure of Fig5_64 is
--Component declaration for AND gate
component AND_gate is
port (A, B: in bit; $X:$ out bit);
end component AND_gate;
--Component declaration for OR gate
component OR gate is
port ( $\overline{\mathrm{A}}, \mathrm{B}:$ in bit; $\mathrm{X}:$ out bit);
end component OR_gate;
--Component declaration for Inverter
component Inverter is
port (A: in bit; $X:$ out bit);
end component Inverter;
signal G1OUT, G2OUT, G3OUT, INVOUT: bit;
begin
G1: AND_gate port map ( $\mathrm{A}=>$ IN1, $\mathrm{B}=>$ IN2, $\mathrm{X}=>$ G1OUT);
G2: AND_gate port map (A => G1OUT, B => IN3, X => G2OUT);
INV: Inverter port map (A => IN5, X => INVOUT);
G3: AND_gate port map ( $\mathrm{A}=>$ IN4, $\mathrm{B}=>$ INVOUT, $\mathrm{X}=>$ G3OUT);
G4: OR_gate port map ( $\mathrm{A}=>\mathrm{G} 2 \mathrm{OUT}, \mathrm{B}=>\mathrm{G} 30 \mathrm{UT}, \mathrm{X}=>$ OUT);
end architecture Structure;
38. --Program for textbook Figure5_68 data flow approach entity Fig5_68 is
port $\overline{\text { ( }} \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}:$ in bit; $\mathrm{X}:$ out bit);
end entity Fig5_68;
architecture DataFlow of Fig5_68 is begin
$X<=$ (not $A$ or not $B$ or $C$ ) and $E$ or ( $C$ or not $D$ ) and $E$;
end architecture DataFlow;
See Figure 5-59 for the circuit in textbook Figure 5-68 labeled for the structural approach.

--Program for textbook Fig5_68 structural approach
entity Fig5_68 is
port (IN1, IN2, IN3, IN4, IN5: in bit; OUT: out bit);
end entity Fig5_68;
architecture Structure of Fig5 68 is
--Component declaration for 3 -input NAND gate
component NAND_gate3 is
port ( $\mathrm{A},-\mathrm{B}, \mathrm{C}$ : in bit; X : out bit);
end component NAND_gate3;
--Component declarātion for 2 -input NAND gate
component NAND_gate2 is
port (A, B: in bit; $\mathrm{X}:$ out bit);
end component NAND_gate2;
--Component declaration for Inverter
component Inverter is
port (A: in bit; $X:$ out bit);
end component Inverter;
signal G2OUT, G3OUT, G4OUT, G5OUT, INVOUT: bit;
begin
G1: NAND_gate2 port map ( $\mathrm{A}=>\mathrm{G} 20 \mathrm{~T}, \mathrm{~B}=>\mathrm{G} 40 \mathrm{OT}, \mathrm{X}=>$ OUT);
G2: NAND_gate2 port map ( $A=>$ G3OUT, $B=>$ IN5, $X=>$ G2OUT);
INV: Inverter port map ( $\mathrm{A}=>$ IN3, $\mathrm{X}=>$ INVOUT);
G3: NAND_gate3 port map ( $\mathrm{A}=>$ IN1, $\mathrm{B}=>$ IN2, $\mathrm{C}=>$ INVOUT, $\mathrm{X}=>$
G3OUT) ;
G4: NAND_gate2 port map ( $\mathrm{A}=>$ IN5, $\mathrm{B}=>\mathrm{G5OUT}, \mathrm{X}=>\mathrm{G4OUT}$ );
G5: NAND_gate2 port map ( $A=>$ INVOUT, $B=>$ IN4, $X=>G 5 O U T$ );
end architecture Structure;
39. From the VHDL program, the logic expression is stated as a Boolean expression as follows:

$$
\begin{aligned}
X= & (\overline{\bar{A} \bar{B}+\bar{A} \bar{C}+\bar{A} \bar{D}+\bar{B} \bar{C}+\bar{B} \bar{D}+\bar{D} \bar{C})} \\
& =((A+B)(A+C)(A+D)(B+C)(B+D)(D+C)) \\
& =(A+B)(A+C)(A+D)(B+C)(B+D)(D+C)
\end{aligned}
$$

The truth table is:

| $\boldsymbol{A}$ | $\boldsymbol{B}$ | $\boldsymbol{C}$ | $\boldsymbol{D}$ | $\boldsymbol{X}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 0 |


$|$| 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |

```
40. --Program for textbook Figure5_62 data flow approach
        entity Fig5_62 is
            port (A1, A2, B1, B2: in bit; X: out bit);
            end entity Fig5_62;
            architecture LogicCircuit of Fig5_62 is
            begin
            X <= (A1 and A2) or (A2 and not B1) or (not B1 and not B2) or
(not B2 and A1);
    end architecture LogicCircuit;
```

41. The AND gates are numbered top to bottom G1, G2, G3, G4. The OR gate is G5 and the inverters are, top to bottom. G6 and G7. Change $A_{1}, A_{2}$, $B_{1}, B_{2}$ to IN1, IN2, IN3, IN4 respectively. Change $X$ to OUT.
```
entity Circuit5_62 is
```

    port (IN1, IN2, IN3, (IN4: in bit; OUT: out bit);
    end entity Circuit 562;
architecture Logic of Circuit 5_62 is
component AND gate is
port (A, B: in bit; $X:$ out bit);
end component AND_gate;
component OR_gate is
port ( $\bar{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}:$ in bit; $\mathrm{X}:$ out bit);
end component OR gate;
component Inverter is
port (A: in bit; X: out bit);
end component Inverter;
signal G1OUT, G2OUT, G3OUT, G4OUT, G5OUT, G6OUT, G7OUT: bit;
begin
G1: AND_gate port map (A => IN1, B => IN2, X => G1OUT);
G2: AND_gate port map (A => IN2, B => G6OUT, X => G2OUT);
G3: AND_gate port map ( $\mathrm{A}=>$ G6OUT, $B=>$ G7OUT, $X=>$ G3OUT);
G4: AND_gate port map ( $\mathrm{A}=>\mathrm{G7OUT}, \mathrm{~B}=>$ IN1, $\mathrm{X}=>\mathrm{G4OUT}$ );
G5: OR_gate port map ( $A=>G 1 O U T, B=>G 2 O U T, X=>G 3 O U T$,
$D^{-}=$G4OUT, $\mathrm{X}=>$ OUT) ;
G6: Inverter port map (A => IN3, X => G6OUT);
G7: Inverter port map ( $\mathrm{A}=>\mathrm{IN} 4, \mathrm{X}=>\mathrm{G7OUT}$ );
end architecture Logic;

## Section 5-7 Troubleshooting

42. $X=\overline{\overline{A B}+\overline{C D}}=A B C D$
$X$ is HIGH only when $A B C D$ are all HIGH. This does not occur in the waveforms, so $X$ should remain LOW. The output is incorrect.
43. $X=A B C+D \bar{E}$

Since $X$ is the same as the $G_{3}$ output, either $G_{1}$ or $G_{2}$ has failed with its output stuck LOW.
44. $X=A B+C D+E F$
$X$ does not go HIGH when $C$ and $D$ are HIGH. $G_{2}$ has failed with the output open or stuck HIGH or the corresponding input to $G_{4}$ is open.
45. See Figure 5-60.


Since $X$ does not go HIGH when $C$ or $D$ is HIGH, the output of gate $G_{2}$ must be stuck LOW.
47. (a) $\quad X=(\bar{A}+\bar{B}+C) E+(C+\bar{D}) E=\bar{A} E+\bar{B} E+C \bar{X}+C E+\bar{D} E$

$$
=\bar{A} E+\bar{B} E+C E+\bar{D} E
$$

See Figure 5-61.

(c) $\quad X=E+E(\bar{A}+\bar{B}+C)=E(1+\bar{A}+\bar{B}+C)=E$

Again waveform $X$ is the same as waveform $E$. As strange as it may seem, the shorted input to $G_{5}$ does not affect the output for this particular set of input waveforms.

Conclusion: the two faults are not indicated in the output waveform for these particular inputs.
48. $\mathrm{TP}=\overline{\bar{A} \bar{B}+\bar{C} \bar{D}}$

The output of the $\bar{C} \bar{D}$ gate is stuck LOW. See Figure 5-62.


## Digital

49. See Fi

FIGURE 5-57

CIGURE
50.
51.


52.

| $A_{3}$ | $A_{2}$ | $A_{1}$ | $A_{0}$ | $X$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

See Figure 5-66.

53. Let
$X=\mathrm{La}$
$\frac{A}{A}=$ Fr
$=$ Front door switch off
$B=$ Back door switch on
$\bar{B}=$ Back door switch off
$X=A \bar{B}+\bar{A} B$. This is an XOR operation.
See Figure 5-67.

55. See Figure 5-69.

56. Pin B of G 1 open.
57. Pin $C$ of $O R$ gate open.
58. Inverter input open.
59. No fault.

## CHAPTER 6

FUNCTIONS OF COMBINATIONAL LOGIC

Section 6-1 Basic Adders

1. (a) XOR (upper) output $=0$, Sum output $=1$, AND (upper) output $=0$,
AND (lower) output $=1$, Carry output $=1$
(b) XOR (upper) output $=1$, Sum output $=0$, AND (upper) output $=1$,
(c) $\quad$ AND (lower) output $=0$, Carry output $=1$
XOR (upper) output $=1$, Sum output $=1$, AND (upper) output $=0$,
AND (lower) output $=0$, Carry output $=0$
2. (a) $A=0, B=0, C_{\text {in }}=0$
(b) $A=1, B=0, C_{\text {in }}=0$ or $A=0, B=1, C_{\text {in }}=0$ or $A=0, B=0, C_{\text {in }}=1$
(c) $A=1, B=1, C_{\text {in }}=1$
(d) $A=1, B=1, C_{\text {in }}=0$ or $A=0, B=1, C_{\text {in }}=1$ or $A=1, B=0, C_{\text {in }}=1$
3. 

(a) $\Sigma=1, \quad C_{\text {out }}=0$
(b) $\quad \Sigma=1, \quad C_{\text {out }}=0$
(c) $\quad \Sigma=0, C_{\text {out }}=1$
(d) $\quad \Sigma=1, C_{\text {out }}=1$

Section 6-2 Parallel Binary Adders
4.

| 111 |
| ---: |
| 101 |
| 1100 |

See Figure 6-1.
1100

5. 10101 See Figure 6-2.
$\frac{00111}{11100}$

6. See Fi

FIGURE 6-3
7.


$$
\begin{aligned}
& \Sigma_{1}=0110 \\
& \Sigma_{2}=1011 \\
& \Sigma_{3}=0110 \\
& \Sigma_{4}=0001 \\
& \Sigma_{5}=1000
\end{aligned}
$$

8. $\begin{array}{r}0100 \\ 1110 \\ \hline 10010\end{array}$
$\Sigma$ outputs should be $C_{\text {out }} \Sigma_{4} \Sigma_{3} \Sigma_{2} \Sigma_{1}=10010$.
The $\Sigma_{3}$ output (pin 2) is HIGH and should be LOW.

9. $t_{p(\text { tot })}=40 \mathrm{~ns}+6(25 \mathrm{~ns})+35 \mathrm{~ns}=225 \mathrm{~ns}$
10. Full-adder 5:
$C_{\text {in5 }}=C_{\text {out }} 4$
$C_{\text {out } 5}=C_{g 5}+C_{p 5} C_{g 4}+C_{p 5} C_{p 4} C_{g 3}+C_{p 5} C_{p 4} C_{p 3} C_{g 2}+C_{p 5} C_{p 4} C_{p 3} C_{g 2} C_{g 1}+C_{p 5} C_{p 4} C_{p 3} C_{p 2} C_{p 1} C_{\text {in } 1}$
The logic to be added to text Figure 6-18 is shown in Figure 6-5.

Section

12. See Figure 6-7.
13. (a) $A>$


Section 6-5 Decoders
14. (a) $A_{3} A_{2} A_{1} A_{0}=1110$
(b) $\quad A_{3} A_{2} A_{1} A_{0}=1100$
(c) $\quad A_{3} A_{2} A_{1} A_{0}=1111$
(d) $\quad A_{3} A_{2} A_{1} A_{0}=1000$
15. See Figure 6-8.

18. $Y=A_{2} A_{1} \overline{A_{0}}+A_{2} \overline{A_{1}} A_{0}+\overline{A_{2}} A_{1} \overline{A_{0}}$ See Figure 6-10.

21. $A_{0}, A_{1}$, and

FIGURE 6-11
alid BCD code.
22. Pin 2 is for decimal 5, pin 5 is for decimal 8, and pin 12 is for decimal 2.

The highest priority input is pin 5.
The completed outputs are: $\overline{A_{3}} \overline{A_{2}} \overline{A_{1}} A_{0}=0111$, which is binary 8 (1000).

Section 6-7 Code Converters
23. (a) $2_{10}=0010_{\mathrm{BCD}}=0010_{2}$
(b) $8_{10}=1000_{\mathrm{BCD}}=1000_{2}$
(c) $\quad 13_{10}=00010011_{\text {вср }}=1101_{2}$
(d) $\quad 26_{10}=00100110_{\text {BCD }}=11010_{2}$
(e) $\quad 33_{10}=00110011_{\text {вСD }}=100001_{2}$
24.

| (a) | 1010101010 | binary |
| :--- | :--- | :--- |
|  | 1111111111 | gray |
| (c) | 0000001110 | binary |
|  | 0000001001 | gray |

(b) 1111100000 1000010000
(d) 1111111111 1000000000
binary gray
binary gray
25.

See Figure 6-12.


See Figure 6-13.

26. $S_{1} S_{0}=01$ selects, $D_{1}$, therefore $Y=1$.
27. See Figure 6-14.


## Section 6-9 Demultiplexers

29. See Figure 6-16.


FIGURE 6-17
31. See Figure 6-18.

Section 6-11 Trou

32. The outputs given in the problem are incorrect. By observation of these incorrect waveforms, we can conclude that the outputs of the device are not open or shorted because both waveforms are changing.

Observe that at the beginning of the timing diagram all inputs are 0 but the sum is 1. This indicates that an input is stuck HIGH. Start by assuming that $C_{\text {in }}$ is stuck HIGH. This results in $\Sigma$ and $C_{\text {out }}$ output waveforms that match the waveforms given in the problem, indicating that $C_{\text {in }}$ is indeed stuck HIGH, perhaps shorted to $V_{\text {cC }}$.

See Figure 6-19 for the correct outpu

34. Step 1: Verify that the supply voltage is applied. Step 2: Go through the key sequence and verify the output code in Table 1.

| Key | $A_{3}$ | $A_{2}$ | $A_{1}$ | $A_{0}$ |
| :---: | :---: | :---: | :---: | :---: |
| None | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |


| 2 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 1 | 0 | 0 |
| 4 | 1 | 0 | 1 | 1 |
| 5 | 1 | 0 | 1 | 0 |
| 6 | 1 | 0 | 0 | 1 |
| 7 | 1 | 0 | 0 | 0 |
| 8 | 0 | 1 | 1 | 1 |
| 9 | 0 | 1 | 1 | 0 |

## TABLE 1

Step 3: Check for proper priority operation by repeating the key sequence in Table 1 except that for each key closure, hold that key down and depress each lower-valued key as specified in Table 2.

| Hold down keys | Depress keys one at a time | $A_{3}$ | $A_{2}$ | $A_{1}$ | $A_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 | 1 | 0 |
| 2 | 1, 0 | 1 | 1 | 0 | 1 |
| 3 | 2, 1, 0 | 1 | 1 | 0 |  |
| 4 | 3, 2, 1, 0 | 1 | 0 | 1 | 1 |
| 5 | 4, 3, 2, 1, 0 | 1 | 0 | 1 |  |
| 6 | 5, 4, 3, 2, 1, 0 | 1 | 0 | 0 | 1 |
| 7 | 6, 5, 4, 3, 2, 1, 0 | 1 | 0 | 0 |  |
| 8 | 7, 6, 5, 4, 3, 2, | 0 | 1 | 1 | 1 |
| 9 | 1, 0 | 0 | 1 | 1 | 0 |
|  | $\begin{aligned} & 8,7,6,5,4,3, \\ & 2,1,0 \end{aligned}$ |  |  |  |  |

TABLE 2
35. (a) Open $A_{1}$ input acts as a HIGH. All binary values corresponding to a BCD number having a 1 's value of $0,1,4,5,8$, or 9 will be off by 2. This will first be seen for a BCD value of 00000000 .
(b) carry out will be off by 32. This will first be seen for a $B C D$ value of 00000000 .
(c) The $\Sigma_{4}$ output of top adder is shorted to ground. Same binary values above 15 will be short by 16 . The first $B C D$ value to indicate this will be 00011000 .
$\Sigma_{3}$ of bottom adder is shorted to ground. Every other set of 16 value starting with 16 will be short 16 . The first BCD value to indicate this will be 00010110.
36. (a) The $1 Y 1$ output of the 74 LS 139 is stuck HIGH or open; B cathode open.
(b) No power; EN input to the 74 LS139 is open.
(c) The $f$ output of the 74 LS 48 is stuck HIGH.
(d) The frequency of the data select input is too low.
37. 1. Place a LOW on pin 7 (Enable).
2. Apply a HIGH to $D_{0}$ and a LOW to $D_{1}$ through $D_{7}$.
3. Go through the binary sequence on the select inputs and check $Y$ and $\bar{Y}$ according to Table 3.

| $S_{2}$ | $S_{1}$ | $S_{0}$ | $Y$ | $\bar{Y}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 |


| 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 |

## TABLE 3

4. 

Repeat the binary sequence of select inputs for each set of data inputs listed in Table 4. A HIGH on the $Y$ output should occur only for the corresponding combinations of select inputs shown.

| $D_{0}$ | $D_{1}$ | $D_{2}$ | $D_{3}$ | $D_{4}$ | $D_{5}$ | $D_{6}$ | $D_{7}$ | $Y$ | $\bar{Y}$ | $S_{2}$ | $S_{1}$ | $S_{0}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L | H | L | L | L | L | L | L | 1 | 0 | 0 | 0 | 1 |
| L | L | H | L | L | L | L | L | 1 | 0 | 0 | 1 | 0 |
| L | L | L | H | L | L | L | L | 1 | 0 | 0 | 1 | 1 |
| L | L | L | L | H | L | L | L | 1 | 0 | 1 | 0 | 0 |
| L | L | L | L | L | H | L | L | 1 | 0 | 1 | 0 | 1 |
| L | L | L | L | L | L | H | L | 1 | 0 | 1 | 1 | 0 |
| L | L | L | L | L | L | L | H | 1 | 0 | 1 | 1 | 1 |

TABLE 4
38. The $\Sigma$ EVEN output of the 74 LS 280 should be HIGH and the output of the error gate should be HIGH because of the error condition. Possible faults are:

1. $\Sigma$ EVEN output of the 74LS280 stuck LOW.
2. Error gate faulty.
3. The ODD input to the 74 LS 280 is open thus acting as a HIGH.
4. The inverter going to the ODD input of the 74 LS 280 has an open
output or the output is stuck HIGH.
5. Apply a HIGH in turn to each Data input, $D_{0}$ through $D_{7}$ with LOWs on all the other inputs. For each HIGH applied to a data input, sequence through all eight binary combinations of select inputs ( $S_{2} S_{1} S_{0}$ ) and check for a HIGH on the corresponding data output and LOWs on all the other data outputs.

One possible approach to implementation is to decode the $S_{2} S_{1} S_{0}$ inputs and generate an inhibit pulse during any given bit time as determined by the settings of seven switches. The inhibit pulse effectively changes a LOW on the $Y$ serial data line to a HIGH during the selected bit time(s), thus producing a bit error. A basic diagram of this approach is shown in Figure 6-20.

http://ebook29.blogspot.com
FIGURE 6-20

## Digital System Application

40. See Figure 6-21

41. See Figure 6-2

From
state
state
decoder


Output logic
FIGURE 6-
Special Design
42. See Figure 6-23.

43. $\Sigma=\bar{A} \bar{B} C_{\text {in }}+\bar{A} B \bar{C}_{\text {in }}+A \bar{B} \bar{C}_{\text {in }}+A B C_{\text {in }}$
$C_{\text {out }}=A B C_{\text {in }}+\bar{A} B C_{\text {in }}+A \bar{B} C_{\text {in }}+A B \bar{C}_{\text {in }}$
See Figure 6-24.

$\Sigma=$ No simplification
$C_{\text {out }}=B C_{\text {in }}+A B+A C_{\text {in }}$

44. $Y=\overline{A_{3}} \overline{A_{2}} A_{1} \overline{A_{0}}+\overline{A_{3}} \overline{A_{2}} A_{1} A_{0}+\overline{A_{3}} A_{2} A_{1} \overline{A_{0}}+\overline{A_{3}} A_{2} A_{1} A_{0}+A_{3} \overline{A_{2}} \overline{A_{1}} \overline{A_{0}}$

$$
+A_{3} \overline{A_{2}} A_{1} \overline{A_{0}}+A_{3} \overline{A_{2}} A_{1} A_{0}+A_{3} A_{2} \overline{A_{1}} A_{0}+A_{3} A_{2} A_{1} A_{0}
$$

See Figure 6-25.


FIGURE 6-26
46. See Figure 6-27.

48. See Figure 6-29.

49. See Figure 6-30.


Multis
FIGURE 6-31
51. LSB aader carry oulpul open.
52. Pins 4 and 5 shorted together.
53. Pin 12 of upper 74148 open.
54. Pin 3 of upper 74151 open.

CHAPTER 7
LATCHES, FLIP-FLOPS, and TIMERS
Section 7-1 Latches

1. See Figure 7-1.


FIGURE 8-1

FIGURE 7-1
2. See Figure 7-2.

4. See Figure 7-4.

6. See Figur FIGURE 8-5

7. See Figure 7-7.

8. See Figure 7-8.

9. See Figure

FIGURE 8-8

10. See Figure 7-10.
11.


FIGURE 8-10


FIGURE 8-11
12.
13.
14. See Fig

FIGURE 8-12


FIGURE 8-13


FIGURE 7-
15. See Figure 7-15.

17. See Figure 7-16.

18. See Figure 7-17.

22. See Figure 7-18.

23. $I_{T}=15(10 \mathrm{~mA})=150 \mathrm{~mA}$

$$
P_{\mathrm{T}}^{\mathrm{T}}=(5 \mathrm{~V})(150 \mathrm{~mA})=750 \mathrm{~mW}
$$


24. See Figure 7-19.

## Section 7-4 Flip-Flop Applications

25. See Figure 7-20.

26. $t_{w}=0.7 R C_{\mathrm{EXT}}=0.7(3.3 \mathrm{k} \Omega)(2000 \mathrm{pF})=4.62 \mu \mathrm{~s}$
27. $R_{X}=\frac{t_{W}}{R C_{\mathrm{EXT}}}-0.7=\frac{5000 \mathrm{~ns}}{0.32 \times 10,000 \mathrm{pF}}-0.7=1.56 \mathrm{k} \Omega$

Section 7-6 The 555 Timer
29. See Figure 7-22.

$$
{ }^{t} \mathrm{w}=0.25 \mathrm{~s}=1.1 \mathrm{R} C_{1}
$$

Choose $C_{1}=1 \mu F$
$R_{\mathrm{I}}=\frac{t_{\mathrm{W}}}{1.1 C_{\mathrm{I}}}=\frac{0.25 \mathrm{~s}}{(1 . \mathrm{I})(1 \mu \mathrm{~F})}=227 \mathrm{k} \Omega \quad$ (use standard $220 \mathrm{k} \Omega$ )


## FIGURE 7-

30. $E=\frac{1}{0.7\left(R_{1}+2 R_{2}\right) C_{2}}=\frac{1}{0.7(1000 \Omega+2200 \Omega)(0.01 \mu \mathrm{~F})}=44.6 \mathrm{kHz}$
31. $T=\frac{1}{f}=\frac{1}{20 \mathrm{kHz}}=50 \mu \mathrm{~s}$

For a duty cycle of 75\%:
$t_{H}=37.5 \mu \mathrm{~S}$ and $t_{L}=12.5 \mu \mathrm{~S}$
$R_{1}+R_{2}=\frac{t_{H}}{0.7 C}=\frac{37.5 \mu \mathrm{~s}}{0.7(0.002 \mu \mathrm{~F})}=26,786 \Omega$
$R_{2}=\frac{t_{L}}{0.7 C}=\frac{12.5 \mu \mathrm{~s}}{0.7(0.002 \mu \mathrm{~F})}=8,929 \Omega$ (use $9.1 \mathrm{k} \Omega$ )
$R_{1}=26,786 \Omega-R_{2}=26,786 \Omega-8,929 \Omega=17,857 \Omega$ (use $18 \mathrm{k} \Omega$ )

## Section 7-7 Troubleshooting

32. The flip-flop in Figure 7-90 of the text has an internally open $J$ input.
33. The wire from pin 6 to pin 10 and the ground wire are reversed. Pin 7 should be at ground and pin 6 connected to pin 10.
34. See Figure 7-23.
35. Since none affects all

must be a fault that all the flip-flops are the clock (CLK) and clear (CLR) inputs. One of these lines must be shorted to ground because a LOW on either one will prevent the flip-flops from changing state. Most likely, the $\overline{\text { CLR }}$ line is shorted to ground because if the clock line were shorted chances are that all of the flip-flops would not have ended up reset when the power was turned on unless an initial LOW was applied to the $\overline{\mathrm{CLR}}$ at power on.
36. Small differences in the switching times of flip-flop A and flip-flop $B$ due to propagation delay cause the glitches as shown in the expanded timing diagram in Figure 7-24. The delays are exaggerated greatly for purposes of illustration. Glitches are eliminated by strobing the output with the clock pulse.

37. 

(a) See Figure 7-25.

(e) See Figure 7-27.
38. $t_{w}=0.7 R C_{B Z}$


One-shot A;
One-shot B
FIGURE 8-32

The pulse width of one shot A is apparently not controlled by the external components and the one-shot is producing its minimum pulse width of about 40 ns . An open pin 11 would cause this problem. See Figure 7-28.


## FIGURE 7-

## Digital System Application

39. For the 4 s timer let $C_{1}=1 \mu \mathrm{~F}$

$$
\begin{aligned}
& R_{1}=\frac{4 \mathrm{~s}}{(1.1)(1 \mu \mathrm{~F})}=3.63 \mathrm{M} \Omega \text { (use } 3.9 \mathrm{M} \Omega \text { ) } \\
& \text { For the } 25 \mathrm{~s} \text { timer let } C_{1}=2.2 \mu \mathrm{~F} \\
& R_{1}=\frac{25 \mathrm{~s}}{(1.1)(2.2 \mu \mathrm{~F})}=10.3 \mathrm{M} \Omega \text { (use } 10 \mathrm{M} \Omega \text { ) } \\
& \text { See Figure } 7-29 .
\end{aligned}
$$

Special Desis
40. See Figure

FIGURE 8-34

41. See Figure 7-31 for one possibility.

44. $K$ input of U 2 open.
45. $\overline{S E T}$ input of U 1 open.
46. No fault.
47. $K$ input of U 2 open.

## CHAPTER 8

## COUNTERS

Section 8-1 Asynchronous Counter Operation

1. See Figure 8-1.

2. 

See Figure

4. See Figure 8-3.

7. Each flip-flop is initially reset.

| CLK | $J_{0} K_{0}$ | $J_{1} K_{1}$ | $J_{2} K_{2}$ | $J_{3} K_{3}$ | $Q_{0}$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 3 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 4 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 5 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 6 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| 7 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 8 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 9 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 10 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

8. See Figure 8-5.

9. See Figu

10. See Figure 8-7.


## Section 8-3 Up/Down Synchronous Counters

12. See Figure 8-9.
13. See Figure 8-1


FIGURE 9-9


The sequence is 000 to 001 to 011 to 111 to 110 to 100 and back to 001, etc.
15.

|  | FF3 | FF2 | FF1 | FF0 | $Q_{3}$ | $Q_{2}$ | $Q_{1}$ | $Q_{0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Initially | Tog | Tog | Tog | Tog | 0 | 0 | 0 | 0 |
| After CLK | NC | NC | NC | Tog | 1 | 1 | 1 | 1 |
| 1 | NC | NC | Tog | Tog | 1 | 1 | 1 | 0 |
| After CLK | NC | Tog | Tog | Tog | 1 | 1 | 0 | 1 |
| 2 | Tog | Tog | Tog | Tog | 1 | 0 | 1 | 0 |
| After CLK | Tog | Tog | Tog | Tog | 0 | 1 | 0 | 1 |
| 3 |  |  |  |  |  |  |  |  |
| After CLK |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |


| After CLK <br> 5 |  |  |
| :--- | :--- | :--- |

Tog $=$ toggle, $N C=$ no change
The counter locks up in the 1010 and 0101 states, alternating between them.
16. NEXT-STATE TABLE

| Present <br> State |  | Next State |  |
| :---: | :---: | :---: | :---: |
| $Q_{1}$ | $Q_{0}$ | $Q_{1}$ | $Q_{0}$ |
| 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 |

TRANSITION TABLE

| Output State <br> Transitions <br> (Present state to <br> next state) |  | Flip-Flop Inputs |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $Q_{1}$ |  |  |  |  |

[^0]17. NEXT-STATE


TRANSITION TABLE


[^1]| $Q_{2} Q_{1} Q^{Q_{0}} 0011$ |  |  |
| :---: | :---: | :---: |
| 00 | X | 1 |
| 01 | 0 | 1 |
| 11 | X | X |
| 10 | X | X |
| $J_{2}=Q_{0}$ |  |  |


18. NEXT-STATE TABLE

| Present |  |  |  | State |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Q_{3}$ | $Q_{2}$ | $Q_{1}$ | $Q_{0}$ | $Q_{3}$ | $Q_{2}$ | $Q_{1}$ | $Q_{0}$ |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |


| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |

TRANSITION TABLE

| Output StateTransition(Present State to nextstate) |  |  |  | $\mathrm{J}_{3}$ | Flip-flop Inputs |  |  |  |  |  | $K_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Q_{3}$ | $Q 2$ | Q | Q |  | $K_{3}$ | $J_{2}$ | K, | $J_{1}$ | $K_{1}$ | $J_{0}$ |  |
| 0 to | 0 to | 0 to | 0 to | 1 | X | , | X | 0 | X | 1 | X |
| 1 | 0 | 0 | 1 | X | 1 | 0 | X | 0 | X | X | 0 |
| 1 to | 0 to | 0 to | 0 to | 1 | X | 0 | X | 0 | X | X | 1 |
| 0 | 0 | 0 | 1 | X | 1 | 0 | X | 1 | X | 0 | X |
| 0 to | 0 to | 0 to | 1 to | 0 | X | 1 | X | X | 0 | 1 | X |
| 1 | 0 | 0 | 0 |  | X | X | 1 | X | 0 | X | 0 |
| 1 to | 0 to | 0 to | 0 to | 0 | X | 1 | X | X | 0 | X | 1 |
| 0 | 0 | 1 | 0 | 0 | X | X | 0 | X | 1 | 0 | X |
| 0 to | 0 to | 1 to | 0 to | 0 | X | X | 0 | 0 | X | 1 | X |
| 0 | 1 | 1 | 1 | 0 | X | X | 1 | 0 | X | X | 1 |
| 0 to 0 | 1 to | 1 to | $\begin{gathered} 1 \text { to } \\ 1 \end{gathered}$ |  |  |  |  |  |  |  |  |
| 0 to | 0 to | 1 to | 1 to |  |  |  |  |  |  |  |  |
| 0 | 1 | 1 | 0 |  |  |  |  |  |  |  |  |
| 0 to | 1 to | 1 to | 0 to |  |  |  |  |  |  |  |  |
| 0 | 1 | 0 | 0 |  |  |  |  |  |  |  |  |
| 0 to | 1 to | 0 to | 0 to |  |  |  |  |  |  |  |  |
| 0 | 1 | 0 | 1 |  |  |  |  |  |  |  |  |
| 0 to | 1 to | 0 to | 1 to |  |  |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |

Binary states for $10,11,12,13,14$, and 15 are unallowed and can be represented by don't cares.

See Figure 8-13. Counter implementation is straightforward from input expressions.
19.

$$
\begin{aligned}
&
\end{aligned}
$$

FIGURE 9-13

| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |

TRANSITION TABLE

| Output State Transitions (Present State to next state) |  |  |  | Y | Flip-flop Inputs |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Q 3$ | Q | Q | Q |  | $\mathrm{J}_{3} \mathrm{~K}_{3}$ | $J_{2} K_{2}$ | $J_{1} K_{1}$ | $J_{0} K_{0}$ |
| 0 to | 0 to | 0 to | 0 to | 0 | 1X | 0X | 1X | 1X |
| 1 | 0 | 1 | 1 | 1 | OX | 0X | 1X | 1X |
| 0 to | 0 to | 0 to | 0 to | 0 | 0X | 0X | X1 | X1 |
| 0 | 0 | 1 | 1 | 1 | 0X | 1X | X1 | X0 |
| 0 to | 0 to | 1 to | 1 to |  | 0X | X1 | 1X | X0 |
| 0 | 0 | 0 | 0 | 1 | 0X | X0 | 1X | X0 |
| 0 to | 0 to | 1 to | 1 to | 0 | 0X | X0 | X1 | X0 |
| 0 | 1 | 0 | 1 | 1 | 1X | X1 | X1 | X0 |
| 0 to | 1 to | 0 to | 1 to | 0 | X1 | 1X | 1X | X0 |
| 0 | 0 | 1 | 1 | 1 | X0 | 0X | 1X | X0 |
| 0 to | 1 to | 0 to | 1 to | 0 | X0 | 0X | X1 | X0 |
| 0 | 1 | 1 | 1 | 1 | X1 | 0X | X1 | X1 |
| 0 to | 1 to | 1 to | 1 to |  |  |  |  |  |
| 0 | 1 | 0 | 1 |  |  |  |  |  |
| 0 to 1 | 1 to | 1 to | 1 to |  |  |  |  |  |
| 1 to | 0 to | 0 to | 1 to |  |  |  |  |  |
| 0 | 1 | 1 | 1 |  |  |  |  |  |
| 1 to | 0 to | 0 to | 1 to |  |  |  |  |  |
| 1 | 0 | 1 | 1 |  |  |  |  |  |
| 1 to | 0 to | 1 to | 1 to |  |  |  |  |  |
| 1 | 0 | 0 | 1 |  |  |  |  |  |
| 1 to | 0 to | 1 to | 1 to |  |  |  |  |  |
| 0 | 0 | 0 | 0 |  |  |  |  |  |

See Figure 8-14.

| $Y=0$ |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| $J_{3}=\bar{Q}_{0}$ | $J_{2}=Q_{3} \bar{Q}_{1}$ | $J_{1}=1$ | $J_{0}=1$ |
|  |  |  |  |
| $\mathrm{n}_{3}-\boldsymbol{y}_{1}$ | $\times 2^{2} \times 1$ | * , | $\because 0_{0}-\chi_{3}{ }_{2}$ |


| $Y=1$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $Q_{2} Q_{2}{ }_{1}^{Q_{1} Q_{0}}$ | $Q Q^{2}{ }^{Q_{1} Q_{0}}$ | ${ }^{2} Q_{0}$ | $0_{0}^{Q_{1} Q_{0}}{ }_{00}$ |
| 00 $0.0 \mid \mathbf{X}$ | $000 \mathbf{0} 1 \mathbf{1}$ | ${ }^{3}{ }^{2}$ oo $\mathbf{1} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$ | $Q_{3} e_{2} 000 \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$ |
| ${ }_{01} \mathbf{X}$ | ${ }_{01} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$ | ${ }_{01} \mathbf{X} \mathbf{1} \mathbf{X} \mathbf{X}$ | ${ }_{01} \mathbf{X} \mathbf{X X X}$ |
| $11 \times \mathbf{X} \times \mathbf{X}$ | ${ }_{11} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$ | $11 \times \mathbf{X} \mathbf{X} \mathbf{X}$ | ${ }_{11} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$ |
| ${ }_{10} 0^{\mathbf{X}} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$ | 10 <br> 1 <br> $\mathbf{X}$ $\mathbf{0}$ | $10 \times 1 \times \mathbf{X}$ | ${ }_{10} \mathbf{X} \mathbf{X X X}$ |
| $J_{3}=Q_{2} Q_{1}$ | $J_{2}=\bar{Q}_{3} Q_{1}$ | $J_{1}=1$ | $J_{0}=1$ |
| $\begin{gathered} Q_{1} Q_{0} \\ 0_{0} \text { ol } 111010 \end{gathered}$ | $Q_{3} Q_{2} \underbrace{Q_{1} Q_{0}}_{1}$ | ${ }^{e_{1} Q_{0}}$ | $)^{Q_{1} e_{0}}$ |
| ${ }^{20}$ ( X X XX | $00 \mathbf{X} \mathbf{X} \mathbf{X X}$ | ${ }^{0} 00$$\mathbf{X}$ $\mathbf{1}$ $\mathbf{X}$ | ${ }^{3}{ }^{2} 000 \mathbf{X} \mathbf{X}$ |
| ${ }_{01} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$ | ${ }_{01} \mathbf{X}$ | ${ }_{01} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{1} \mathbf{1} \mathbf{X}$ | 01 $\mathbf{X}$ 0 0 $\mathbf{X}$ |
| 11. | ${ }_{11} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$ | $\square \mathbf{\square} \times \mathbf{X} \mathbf{X} \mathbf{X}$ | $11 .$1 $\mathbf{X}$ $\mathbf{X}$ $\mathbf{X}$ <br> $\mathbf{X}$ 0  $\mathbf{X}$ |
| ${ }_{10} \mathbf{X}$ | ${ }_{10} \times \mathbf{X} \times \mathbf{X} \times$ | $10 \times \mathbf{X} \mathbf{1} \mathbf{1} \mathbf{X}$ | 10 $\mathbf{X}$ 0 $\mathbf{0}$ $\mathbf{X}$ |
| $K_{3}=Q_{1}$ | $K_{2}=Q_{1}$ | $K_{1}=1$ | $K_{0}=\overline{Q_{3}} \overline{Q_{2}}$ |



$$
\begin{gathered}
f_{1}=\frac{1 \mathrm{kHz}}{4}=250 \mathrm{~Hz} \\
f_{2}=\frac{250 \mathrm{~Hz}}{8}=31.25 \mathrm{~Hz} \\
f_{3}=\frac{31.25 \mathrm{~Hz}}{2}=15.625 \mathrm{~Hz}
\end{gathered}
$$

(b) Modulus $=10 \times 10 \times 10 \times 2=2000$

$$
\begin{gathered}
f_{1}=\frac{100 \mathrm{kHz}}{10}=10 \mathrm{kHz} \\
f_{2}=\frac{10 \mathrm{kHz}}{10}=1 \mathrm{kHz} \\
f_{3}=\frac{1 \mathrm{kHz}}{10}=100 \mathrm{~Hz} \\
f_{4}=\frac{100 \mathrm{~Hz}}{2}=50 \mathrm{~Hz}
\end{gathered}
$$

(c) Modulus $=3 \times 6 \times 8 \times 10 \times 10=14400$

$$
\begin{gathered}
f_{1}=\frac{21 \mathrm{MHz}}{3}=7 \mathrm{MHz} \\
f_{2}=\frac{7 \mathrm{MHz}}{6}=1.167 \mathrm{MHz} \\
f_{3}=\frac{1.167 \mathrm{MHz}}{8}=145.875 \mathrm{kHz} \\
f_{4}=\frac{145.875 \mathrm{kHz}}{10}=14.588 \mathrm{kHz} \\
f_{5}=\frac{14.588 \mathrm{kHz}}{10}=1.459 \mathrm{kHz}
\end{gathered}
$$

(d) Modulus $=2 \times 4 \times 6 \times 8 \times 16=6144$

$$
\begin{aligned}
& f_{1}=\frac{39.4 \mathrm{kHz}}{2}=19.7 \mathrm{kHz} \\
& f_{2}=\frac{19.7 \mathrm{kHz}}{4}=4.925 \mathrm{kHz} \\
& f_{3}=\frac{4.925 \mathrm{kHz}}{6}=820.83 \mathrm{~Hz} \\
& f_{4}=\frac{820.683}{8}=102.6 \mathrm{~Hz} \\
& f_{5}=\frac{102.6 \mathrm{~Hz}}{16}=6.41 \mathrm{~Hz}
\end{aligned}
$$

21. See Figure 8-15.

22. See Figure 8-16.


FIGURE 9-16

## Section 8-6 Counter Decoding

23. See Figure 8-17.

(b)

(d)
24. See $F$

25. The states with an asterisk are the transition states that produce glitches on the decoder outputs. The glitches are indicated on the waveforms in Figure 8-18 (Problem 8-24) by short vertical lines.
```
    Initial
        0000
```

    CLK 10001
    CLK 20000 *
        0010
    CLK 30011
CLK 40010 *
0000 *
0100
CLK 50100
CLK 60100 *
0110
CLK 70111
CLK 80110 *
0100 *
0000 *
1000
CLK 91001
CLK 10 1000*
CLK $11 \quad 1010$
CLK 111011
CLK 12 1010 *
1000 *
1100
CLK 131101
CLK 14 1100 *
1110
CLK 151111
CLK 16 1110 *
1100 *
1000 *
0000
26. See Figure 8-19.

27. See Figure 8-20.


Any glitches can be prevented by using CLK as an input to both decode gates.

Sect

the binary state of each counter after $6260-\mathrm{Hz}$ pulses are:

$$
\begin{aligned}
& \text { Hours, tens: } 0001 \\
& \text { Hours, units: } 0010 \\
& \text { Minutes, tens: } 0000
\end{aligned}
$$

Minutes, units: 0001
Seconds, tens: 0000
Seconds, units: 0010
30. For the digital clock, the counter output frequencies are: Divide-by-60 input counter:
$\frac{60 \mathrm{~Hz}}{60}=1 \mathrm{~Hz}$
Seconds counter:
$\frac{1 \mathrm{~Hz}}{60}=16.7 \mathrm{mHz}$
Minutes counter:
$\frac{16.7 \mathrm{mHz}}{60}=278 \mu \mathrm{~Hz}$
Hours counter:
$\frac{278 \mu \mathrm{~Hz}}{12}=23.1 \mu \mathrm{~Hz}$
31. $53+37-26=64$
32. See Figure 8-22.


## Section 8-9 Troubleshooting

33. (a) $Q_{0}$ and $Q_{1}$ will not change due to the clock shorted to ground at FFO.
(b) $\quad Q_{0}$ being open does not affect normal operation. See Figure 823.
(c)

acts as a HIGH.
(e) A shorted $K$ input will pull all $J$ and $K$ inputs LOW and the counter will not change from its initial state.
34. (a) $Q_{0}$ and $Q_{1}$ will not change from initial states.
(b) See Figure 8-25.

(c) See Figure 8-26.
(d)

anded, producing
(e)
a no-change conaltion. $Q_{0}$ also groundea. see Figure 8-28.


FIGURE 9-30
38. Number of states $=40,000$

$$
\begin{aligned}
& f_{\text {out }}=\frac{5 \mathrm{MHz}}{40,000}=125 \mathrm{~Hz} \\
& 76.2939 \mathrm{~Hz} \text { is not correct. The faulty division factor is } \\
& \frac{5 \mathrm{MHz}}{76.2939 \mathrm{~Hz}}=65,536
\end{aligned}
$$

Obviously, the counter is going through all of its states. This means that the $63 \mathrm{CO}_{16}$ on its parallel inputs is not being loaded. Possible faults are:

- Inverter output is stuck HIGH or open.
- RCO output of last counter is stuck LOW.

39. 

| Stage | Open | Loaded Count | $f_{\text {out }}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 63 Cl | 250.006 |
| 1 | 1 | 63 C 2 | Hz |
| 1 | 2 | 63 C 4 | 250.012 |
| 1 | 3 | 63 C 8 | Hz |
| 2 | 0 | 63D0 | 250.025 |
| 2 | 1 | 63 E 0 | Hz |
| 2 | 2 | $63 \mathrm{C0}$ | 250.050 |
| 2 | 3 | $63 \mathrm{C0}$ | Hz |
| 3 | 0 | $63 \mathrm{C0}$ | 250.100 |
| 3 | 1 | $63 \mathrm{C0}$ | Hz |
| 3 | 2 | $67 \mathrm{C0}$ | 250.200 |
| 3 | 3 | 6 BCO | Hz |
| 4 | 0 | $73 \mathrm{C0}$ | 250 Hz |
| 4 | 1 | $63 \mathrm{C0}$ | 250 Hz |
| 4 | 2 | $63 \mathrm{C0}$ | 250 Hz |
| 4 | 3 | E3C0 | 250 Hz |
|  |  |  | 256.568 |
|  |  |  | Hz |
|  |  |  | 263.491 |
|  |  |  | Hz |
|  |  |  | 278.520 |
|  |  |  | Hz |
|  |  |  | 250 Hz |
|  |  |  | 250 Hz |
|  |  |  | 1.383 kHz |

40.     - The flip-flop output is stuck HIGH or open.

- The least significant BCD/7-segment input is open.

See Figure 8-31.


FIGURE 8-31
41. Th DIV 6 is the tens of minutes counter. $Q_{1}$ open causes a continuous apparent HIGH output to the decode 6 gate and to the BCD/7-segment decoder/driver.

The apparent counter sequence is shown in the table.

| Actual <br> Ctr. | State of | Apparent |  |  | state |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  |  | $Q_{3}$ | $Q_{2}$ | $Q_{1}$ | $Q_{0}$ |
| 0 | 0 | 0 | 1 | 0 |  |
|  | 1 | 0 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 | 0 |  |
| 3 | 0 | 0 | 1 | 1 |  |
| 4 | 0 | 1 | 1 | 0 |  |

The decode 6 gate interprets count 4 as a 6 (0110) and clears the counter back to 0 (actually 0010). Thus, the apparent (not actual) sequence is as shown in the table.
42. There are several possible causes of the malfunction. First check power to all units. Other possible faults are listed below.

- Sensor Latch

Action: Disconnect entrance sensor and pulse sensor input. Observation: Latch should SET.
Conclusion: If latch does not SET, replace it.

- NOR gate

Action: Pulse sensor input.
Observation: Pulse on gate output.
Conclusion: If there is no pulse, replace gate.

- Counter

Action: Pulse sensor input.
Observation: Counter should advance. Conclusion: If counter does not advance, replace it.

- Output Interface

Action: Pulse sensor input until terminal count is reached.
Observation: FULL indication and gate lowered
Conclusion: No FULL indication or if gate does not lower,
replace interface.

- Sensor/Cable

Action: Try to activate sensor.
Observation: If all previous checks are OK, sensor or cable is faulty.

Conclusion: Replace sensor or cable.

## Digital System Application

43. The expressions for the $D_{0}$ and the $D_{1}$ flip-flop inputs in the
sequential logic portion of the system were developed for the System Assignment Activities 1 and 2. Figure 8-32 shows the NAND implementation.

$$
\begin{aligned}
& D_{0}=\bar{Q}_{1} Q_{0}+Q_{1} \overline{T_{L}} V_{S}+Q_{0} T_{L} V_{S} \\
& D_{1}=Q_{0} \overline{T_{L}}+Q_{1} T_{S}
\end{aligned}
$$


44. See Figure 8-3

FIGURE 9-32


## Special Design Problems

46. See Figure 8-34.
47. 


(modulus 30,000).
$35,536=1000101011010000_{2}=8$ ADO $_{16}$
See Figure 8-35.


65,536 on each full cycle, thus producing a sequence of 50,000 states (modulus 50,000).
$15,536=11110010110000_{2}=3 \mathrm{CBO}_{16}$

See Figure 8-36.

49.

FIGURE 9-36
counter is not preset. One possible implementation is shown in figure 8-37.

50. See Figure 8-38.


FIGURE 8-40
53. NEXT-STATE TABLE

| Present |  |  |  | State |  |  | Next |  |  |  | State |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Q_{3}$ | $Q_{2}$ | $Q_{1}$ | $Q_{0}$ | $Q_{3}$ | $Q_{2}$ | $Q_{1}$ | $Q_{0}$ |  |  |  |  |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |  |  |  |  |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |  |  |  |  |
| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |  |  |  |  |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |  |  |  |  |
| 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |  |  |  |  |
| 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |  |  |  |  |

TRANSITION TABLE

| Output$Q_{3}$ | State Q | Transitions |  | Flip-flop Inputs |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $Q$ | $Q$ | $J_{3} K_{3}$ | $J_{2} K_{2}$ | $J_{1} K_{1}$ | $J_{0} K_{0}$ |
| 0 to | 0 to | 0 to | 0 to | 1X | 1X | 1X | 1X |
| 1 | 1 | 1 | 1 | X0 | X0 | X0 | X1 |
| 1 to | 1 to | 1 to | 1 to | X0 | X0 | X1 | 1X |
| 1 | 1 | 1 | 0 | X0 | X1 | 1X | X1 |
| 1 to | 1 to | 1 to | 0 to | X1 | 1X | X1 | 1X |
| 1 | 1 | 0 | 1 | 0X | X1 | 0X | X1 |
| 1 to | 1 to | 0 to | 1 to |  |  |  |  |
| 1 | 0 | 1 | 0 |  |  |  |  |
| 1 to | 0 to | 1 to | 0 to |  |  |  |  |
| 0 | 1 | 0 | 1 |  |  |  |  |
| 0 to | 1 to | 0 to | 1 to |  |  |  |  |
| 0 | 0 | 0 | 0 |  |  |  |  |

See Figure 8-41.


The desired sequence

54. See Figure 8-42.


## CHAPTER 9

## SHIFT REGISTERS

## Section 9-1 Basic Shift Register Functions

1. Shift registers store binary data in a series of flip-flops or other storage elements.
2. 1 byte $=8$ bits; 2 bytes $=16$ bits

Section 9-2 Serial In/Serial Out Shift Registers
3. See Figure 9-1.
4.

5.

| Initia | 10100111100 |
| :---: | :---: |
| lly | 0 |
| CLK 1 | 01010011110 |
| CLK 2 | 0 |
| CLK 3 | 00101001111 |
| CLK 4 | 0 |
| CLK 5 | 00010100111 |
| CLK 6 | 1 |
| CLK 7 | 00001010011 |
| CLK 8 | 1 |
| CLK 9 | 10000101001 |
| CLK 10 | 1 |
| CLK 11 | 11000010100 |
| CLK 12 | 1 |
|  | 11100001010 |
|  | 0 |
|  | 01110000101 |
|  | 0 |
|  | 00111000010 |
|  | 1 |
|  | 00011100001 |
|  | 0 |
|  | 10001110000 |
|  | 1 |
|  | 11000111000 |
|  | 0 |

6. See Figure 9-3.


The number binary number 11011010 is stored in the register after eight clock pulses. FIGURE 9-5

FIGURE 10-5
9. See Figure 9-6.
10. See Figure
11. See Figure


FIGURE 10-7


Section 9-4 Parallel In/Serial Out Shift Registers
12. See Figure 9-9.

13. See Figu

FIGURE 10-9

14. See Figu


FIGURE 10-11
15.


Section 9-5 Parallel In/Parallel Out Shift Registers 16. See Figure 9-13.

17. See Figure 9-14.
18. See Fig


## Section 9-6 Bidirectional Shift Registers

19. 

| Initially | 01001100 |  |
| :--- | :--- | :--- |
| (76) | 10011000 | Shift left |
| CLK 1 | 01001100 | Shift |
| CLK 2 | 00100110 | right |
| CLK 3 | 00010011 | Shift |
| CLK 5 5 | 00100110 | right |
| CLK 6 | 01001100 | Shift |
| CLK 7 | 00100110 | right |
| CLK 8 | 01001100 | Shift left |
| CLK 9 | 00100110 | Shift left |
| CLK 10 | 01001100 | Shift |
| CLK 11 | 10011000 | right left |
|  |  | Shift left |
|  |  | Shift |
|  |  | Shight left |
|  |  | Shift left |

20. 

| Initially | 01001100 |  |
| :--- | :--- | :--- |
| (76) | 00100110 | Shift |
| CLK 1 | 00010011 | right |
| CLK 2 | 00001001 | Shift |
| CLK 3 | 00010010 | right |
| CLK 4 | 00100100 | Shift |
| CLK 5 6 | 01001000 | right |
| CLK 7 7 | 00100100 | Shift left |
| CLK 8 | 01001000 | Shift left |
| CLK 9 | 10010000 | Shift left |
| CLK 10 | 00100000 | Shift |
| CLK 11 | 00010000 | right |
| CLK 12 | 00001000 | Shift left |
|  |  | Shift left |
|  |  | Shift left |
|  |  | Shift |
|  |  | Shifht |
| right |  |  |

21. See Figure 9-16.

22. See Figure 9-17.

23. $2 n=18 ; n=9$ flip-flops

| $Q_{0}$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $Q_{4}$ | $Q_{5}$ | $Q_{6}$ | $Q_{7}$ | $Q_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

See Figure 9-18.

25. See Figure 9-19.

26. A 15-bit stages RE See Figure

FIGURE 10-19
and the remaining


FIGURE 9-20
FIGURE 10-20

## Section 9-8 Shift Register Applications

27. See Figure 9-21.

the ring counter when power is turned on.
28. An incorrect code may be produced.

Section 9-10 Troubleshooting
30. $Q_{2}$ goes HIGH on the first clock pulse indicating that the $D$ input is open. See Figure 9-22.


FIGURE 10-22
31. Since the LSB flip-flop works during serial shift, the problem is most likely in gate G3. An open $D_{3}$ input at $G 3$ will cause the observed waveform. See Figure 9-23.


FIGURE 9-23

FIGURE10-23
32. It inverter input will keep the inverter output LOW thus disabling all of the shift-left control gates G5, G6, G7, and G8.
33. (a) No clock at switch closure due to faulty NAND gate or one-shot; open clock input to key code register; open $\mathrm{SH} / \overline{\mathrm{LD}}$ input to key code register.
(b) The diode in the third row is open; $Q_{2}$ output of ring counter is open.
(c) The NAND (negative-OR) gate input connected to the first column is shorted to ground or open, preventing a switch closure transition.
(d) The "2" input to the column encoder is open.
34. 1. Number the switches in the matrix according to the following format:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
| 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |

2. Depress switches one at a time and observe the key code output according to the following Table 1.

| Switch number | Key Code Register |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $Q_{0}$ | Q, | $Q 2$ | $Q_{3}$ | Q。 | $Q_{5}$ |
| 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 2 | 0 | 1 | 1 | 1 | 0 | 1 |
| 3 | 0 | 1 | 1 | 0 | 0 | 1 |
| 4 | 0 | 1 | 1 | 1 | 1 | 0 |
| 5 | 0 | 1 | 1 | 0 | 1 | 0 |
| 6 | 0 | 1 | 1 | 1 | 0 | 0 |
| 7 | 0 | 1 | 1 | 0 | 0 | 0 |
| 8 | 0 | 1 | 1 | 1 | 1 | 1 |
| 9 | 1 | 0 | 1 | 0 | 1 | 1 |
| 10 | 1 | 0 | 1 | 1 | 0 | 1 |
| 11 | 1 | 0 | 1 | 0 | 0 | 1 |
| 12 | 1 | 0 | 1 | 1 | 1 | 0 |
| 13 | 1 | 0 | 1 | 0 | 1 | 0 |
| 14 | 1 | 0 | 1 | 1 | 0 | 0 |
| 15 | 1 | 0 | 1 | 0 | 0 | 0 |
| 16 | 1 | 0 | 1 | 1 | 1 | 1 |
| 17 | 0 | 0 | 1 | 0 | 1 | 1 |
| 18 | 0 | 0 | 1 | 1 | 0 | 1 |
| 19 | 0 | 0 | 1 | 0 | 0 | 1 |
| 20 | 0 | 0 | 1 | 1 | 1 | 0 |
| 21 | 0 | 0 | 1 | 0 | 1 | 0 |
| 22 | 0 | 0 | 1 | 1 | 0 | 0 |
| 23 | 0 | 0 | 1 | 0 | 0 | 0 |
| 24 | 0 | 0 | 1 | 1 | 1 | 1 |
| 25 | 1 | 1 | 0 | 0 | 1 | 1 |
| 26 | 1 | 1 | 0 | 1 | 0 | 1 |
| 27 | 1 | 1 | 0 | 0 | 0 | 1 |
| 28 | 1 | 1 | 0 | 1 | 1 | 0 |
| 29 | 1 | 1 | 0 | 0 | 1 | 0 |
| 30 | 1 | 1 | 0 | 1 | 0 | 0 |
| 31 | 1 | 1 | 0 | 0 | 0 | 0 |
| 32 | 1 | 1 | 0 | 1 | 1 | 1 |
| 33 | 0 | 1 | 0 | 0 | 1 | 1 |
| 34 | 0 | 1 | 0 | 1 | 0 | 1 |
| 35 | 0 | 1 | 0 | 0 | 0 | 1 |
| 36 | 0 | 1 | 0 | 1 | 1 | 0 |
| 37 | 0 | 1 | 0 | 0 | 1 | 0 |
| 38 | 0 | 1 | 0 | 1 | 0 | 0 |
| 39 | 0 | 1 | 0 | 0 | 0 | 0 |
| 40 | 0 | 1 | 0 | 1 | 1 | 1 |
| 41 | 1 | 0 | 0 | 0 | 1 | 1 |
| 42 | 1 | 0 | 0 | 1 | 0 | 1 |
| 43 | 1 | 0 | 0 | 0 | 0 | 1 |
| 44 | 1 | 0 | 0 | 1 | 1 | 0 |
| 45 | 1 | 0 | 0 | 0 | 1 | 0 |
| 15 | 1 | $\bigcirc$ | $\bigcirc$ | 1 | $\bigcirc$ | $\bigcirc$ |
| 47 | 1 | 0 | 0 | 0 | 0 | 0 |
| 48 | 1 | 0 | 0 | 1 | 1 | 1 |
| 49 | 0 | 0 | 0 | 0 | 1 | 1 |
| 50 | 0 | 0 | 0 | 1 | 0 | 1 |
| 51 | 0 | 0 | 0 | 0 | 0 | 1 |
| 52 | 0 | 0 | 0 | 1 | 1 | 0 |
| 53 | 0 | 0 | 0 | 0 | 1 | 0 |
| 54 | 0 | 0 | 0 | 1 | 0 | 0 |
| 55 | 0 | 0 | 0 | 0 | 0 | 0 |
| 56 | 0 | 0 | 0 | 1 | 1 | 1 |
| 57 | 1 | 1 | 1 | 0 | 1 | 1 |
| 58 | 1 | 1 | 1 | 1 | 0 | 1 |


| 60 | 1 | 1 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 61 | 1 | 1 | 1 | 0 | 1 | 0 |
| 62 | 1 | 1 | 1 | 1 | 0 | 0 |
| 63 | 1 | 1 | 1 | 0 | 0 | 0 |
| 64 | 1 | 1 | 1 | 1 | 1 | 1 |

TABLE 1
35. (a) Contents of Data Output Register remain constant.
(b) Contents of both registers do not change.
(c) Third stage output of Data Output Register remains HIGH. (d) Clock generator is disabled after each pulse by the flipflop being continuously SET and then RESET.

## Digital System Application

36. The purpose of the Security Code logic is to accept a 4-digit code, compare it with a stored code, and if the codes match, to disarm the system for entry.
37. The states of shift registers $A$ and $C$ after two correct key closures are:

Shift Register A: 1001
Shift Register C: 00000100
38. The states of shift registers $A$ and $B$ after each key closure when entering 7645 are:

```
After key 7 is pressed:
Shift register A contains 0111
Shift register B contains 11000
After key 6 is pressed:
Shift register A contains 0110
Shift register B contains 11100
After key 4 is pressed:
Shift register A contains 0100
Shift register B contains 11110
After key 5 (an incorrect entry) is pressed:
Shift register A contains 0000
Shift register B contains 10000
```


## Special Design Problems

39. See Figure 9-24.


FIGURE 10-25
40. Figure 9-25 shows only the 74LS164, 74LS199, and 74LS163 portions of the circuit that require modification for 16-bit conversion.


This is one way to implement a power-on LOAD circuit.
43. See Figure 9-28.


## Multisim rrounlesnooclng practice

45. CLK input of U3 open.
46. No fault.
47. Pin 14 open.
48. No fault.
49. CLK input of U6 open.

CHAPTER 10
MEMORY AND STORAGE

## Section 10-1 Basics of Semiconductor Memory

1. (a) ROM: no read/write control
(b) RAM
2. They are random access memories because any address can be accessed at any time. You do not have to go through all the preceding addresses to get to a specific address.
3. Address bus provides for transfer of address code to memory for accessing any memory location in any order for a read or a write operation.
Data bus provides for transfer of data between the microprocessor and memory or input/output devices.
4. (a) $0 \mathrm{~A}_{16}=00001010_{2}=10_{10}$
(b) $\quad 3 \mathrm{~F}_{16}=00111111_{2}=63_{10}$
(c) $\quad \mathrm{CD}_{16}=11001101_{2}=205_{10}$

Section 10-2 Random-Access Memories (RAMs)
5.

|  | BIT <br> 0 |  | BIT <br> 1 | BIT <br> 2 |
| :--- | :--- | :--- | :--- | :--- |
| ROW 0 | 1 | 0 | 0 | 0 |
| ROW 1 | 0 | 0 | 0 | 0 |
| ROW 2 | 0 | 0 | 1 | 0 |
| ROW 3 | 0 | 0 | 0 | 0 |

6. See Figure 10-1.


FIGURE 10-2
9. The difference between SRAM and DRAM is that data in a SRAM are stored in latches or
flip-flops indefinitely as long as power is applied while data in a DRAM are stored in capacitors which require periodic refreshing to retain the stored data.
10. The bit capacity of a DRAM with 12 address lines is

$$
2^{2 \times 12}=2^{24}=16,777,216 \text { bits }=16 \text { Mbits }
$$

Section 10-3 Read-Only Memories (ROMs)
11.

| Input <br> s |  | Outputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{1}$ | $A_{0}$ | $O_{3}$ | $O_{2}$ | $O_{1}$ | $O_{0}$ |  |
| 0 | 0 | 0 | 1 | 0 | 1 |  |
| 0 | 1 | 1 | 0 | 0 | 1 |  |
| 1 | 0 | 1 | 1 | 1 | 0 |  |
| 1 | 1 | 0 | 0 | 1 | 0 |  |

12. 

| Inputs |  |  |  | Outputs |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{2}$ | $A_{1}$ | $A_{0}$ | $O_{3}$ | $O_{2}$ | $O_{1}$ | $O_{0}$ |  |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |
| 0 | 0 | 1 | 1 | 1 | 1 | 1 |  |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 |  |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 |  |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 |  |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 |  |
| 1 | 1 | 0 | 0 | 0 | 1 | 1 |  |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 |  |

13. 

| BCD |  |  |  | Excess - 3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $D_{3}$ | $D_{2}$ | $D_{1}$ | $D_{0}$ | $E_{3}$ | $E_{2}$ | $E_{1}$ | $E_{0}$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |

See Figure 10-3.
14. $2^{14}=16,384$ addresses
$16,384 \times 8$ bits $=131,072$ bits


FIGURE 12-3

Section 10-4 Programmable ROMs (PROMs and EPROMS)
15. Blown links: $1-17,19-23,25-31,34,37,38,40-47,53,55$, 58, 61, 62, 63, 65, 67, 69.

| x Input |  |  |  | $X^{3}$ | X Output |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | $X_{1}$ | $X$, |  | $2^{8}$ | $2^{7}$ | $2^{6}$ | $2^{5}$ | $2^{4}$ | $2^{3}$ | $2^{2}$ | $2^{1}$ | $2^{0}$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2 | 0 | 1 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 3 | 0 | 1 | 1 | 27 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| 4 | 1 | 0 | 0 | 64 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 1 | 0 | 1 | 125 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 6 | 1 | 1 | 0 | 216 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 7 | 1 | 1 | 1 | 343 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |

16. 

| Address | Contents |
| :---: | :---: |
| $A_{13}------\cdots-A_{0}$ | $Q_{7}-----Q_{0}$ |
| 01001100010011 | 10101100 |
| 11011101011010 | 00100101 |
| 01011010011001 | 10110011 |
| 11010010001110 | 00101000 |
| 01010010100101 | 10001011 |
| 01010000110100 | 11010101 |
| 01001001100001 | 11001001 |
| 11011011100100 | 01001001 |
| 01101110001111 | 01010010 |
| 10111110011010 | 01001000 |
| 10101110011010 | 11001000 |

Section 10-6 Memory Expansion
17. $16 \mathrm{k} \times 4$ DRAMS can be connected to make a $64 \mathrm{k} \times 8$ DRAM as shown in Figure 10-4.
18. See Figu

19. Word length $=8$ bits, word capacity $=64 \mathrm{k}$ words Word length $=4$ bits, word capacity $=256 \mathrm{k}$ words

## Section 10-7 Special Types of Memories

20. See Figure 10-6.

21. The first byte goes into $\mathrm{FFF}_{16}$.

The last byte (16th) goes into a lower address: $16_{10}=10_{16}$

$$
\mathrm{FFF}_{16}-10_{16}=\mathrm{FEF}_{16}
$$

See Figure 10-8.


Section 10
FIGURE 12-8
 divided into a number of sectors with each sector of a track having a physical address. Hard disks typically have from a few hundred to a few thousand tracks.
24. Seek time is the average time required to position the drive head over the track containing the desired data. The latency period is the average time required for the data to move under the drive head.
25. Magnetic tape has a longer access time than disk because data must be accessed sequentially rather than randomly.
26. A magneto-optic disk is a read/write medium using lasers and magnetic fields.
A CD-ROM (compact-disk ROM) is a read-only optical (laser) medium.
A WORM (write-once-read-many) is an optical medium in which data can be written once and read many times.

## Section 10-9 Troubleshooting

27. The correct checksum is 00100.

The actual checksum is 01100. The second bit from the left is in
error.
28.
(a)

| ROM0: | Low address $-00_{16}$ |
| :--- | :--- |
| ROM1: | Low address $-20^{16}$ |
| ROM2: | Low address $-40^{16}$ |
| ROM3: | Low address $-60_{16}$ |

High address - $1 \mathrm{~F}_{16}$
High address - $3 \mathrm{~F}_{16}$
High address - $5 \mathrm{~F}_{16}$
High address - $7 \mathrm{~F}_{16}$
(b) Same as flow chart in Figure 10-68 in text except that the last data address is specified as $7 \mathrm{E}_{16}\left(7 \mathrm{~F}_{16}-1\right)$.
(c) See Figure 10-9.


FIGURE 10-9
(d) A single checksum will not isolate the faulty chip. It will only indicate that there is an error in one of the chips.
29. (a) $40_{16}-5 \mathrm{~F}_{16}$ is $64-95$ decimal; ROM 2
(b) $\quad 20_{16}-3 \mathrm{~F}_{16}$ is $32-63$ decimal; ROM 1
(c) $\quad 00_{16}-7 F_{16}$ is $0-127$ decimal; All ROMs

## Digital System Application

30. See Figure 10-10.


## Special Design Problems

34. 35. Add an additional row of four flip-flops.
1. Connect the keypad encoder outputs to the added flip-flops. 3. Change the 2-bit counter to a 3-bit counter.
2. Replace the four 2-input AND gates in the memory address decoder to 3 -input AND gates and add a fifth 3-input AND gate. Modify the decoder to decode 000, 001, 010, 011, 100. Change the 4 -input OR gates to 5-input OR gates.
3. To accommodate a 5-bit entry code, shift register $C$ must be loaded with five 0 s instead of four. The HIGH (1) must be moved lef place on the parallel inputs.

CHAPTER 11
PROGRAMMABLE LOGIC AND SOFTWARE

## Section 11-1 Programmable Logic: SPLDs and CPLDs

1. $\quad X=\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A \bar{B} C$. See Figure 11-1.

(b) PAL12H6 is a programmable array logic device with 12 inputs and 6 active-HIGH outputs.
2. Typically, an exclusive-OR gate is used to determine the polarity of the output. When a 1 is applied to one input of the XOR gate, the output of the XOR is the complement of the signal on the other input. When a 0 is applied to one input of the $X O R$, the signal on the output of the XOR is the same as the signal on the other input.
3. A CPLD basically consists of multiple SPLDs that can be connected with a programmable interconnect array.

## Section 11-2 Altera CPLDs

6. (a) Inputs from PIA to LAB: 36 (b) Outputs from LAB to

PIA: 16
(c) Inputs from I/O to PIA: 8 to 16
(d) Outputs from

LAB to I/O: 8 to 16
7. (a) $\bar{A} B C \bar{D} \quad$ (b) $\quad A B C(\overline{D E})=A B C(\bar{D}+\bar{E})=A B C \bar{D}+A B C \bar{E}$
8. $A \bar{B} C \bar{D}+E F G H+A B \bar{C} D+\bar{A} B C D$

## Section 11-3 Xilinx CPLDs

9. $A \bar{B}+\bar{A} B$
10. (a) Inputs from AIM to FB: 40 (b) Outputs from FB to

AIM: 16
(c) Inputs from I/O to AIM: 16
(d) Outputs from FB to

I/O: 16
11. $\quad X_{1}=A \bar{B} C \bar{D}+\bar{A} B C D+A B C \bar{D}$;

$$
X_{2}=A B C D+A B \bar{C} D+\bar{A} B C \bar{D}+A \bar{B} C D
$$

## Section 11-4 Macrocells

12. (a) A 0 on the select line selects $D_{0}$. The output is 1.
(b) A 1 on the select line selects $D_{1}$. The output is 0 .
13. (a) Since the $D_{0}$ (upper) input of MUX 5 is selected, the macrocell is configured for combinational logic. The output of the XOR goes through MUX 5 to the "To I/O" output making it a 1.
(b) Since the $D_{1}$ (lower) input of MUX 5 is selected, the macrocell is configured for registered logic. The output of the flip-flop goes through MUX 5 to the "TO I/O" output making it a 0 .
14. (a) The macrocell is configured for registered logic because the $D_{1}$ input of MUX 8 is selected, allowing the flip-flop output to pass through.
(b) The GCK1 clock is applied to the flip-flop because the $D_{1}$ input of MUX 3 and the $D_{1}$ input of MUX 5 are selected.
(c) The OR gate output is applied to the XOR which is set for noninversion by MUX 1. The output of the XOR is selected by MUX2 and a 1 is applied to the $D / T$ input of the flip-flop.
(d) The output of MUX 8 is a 1 because MUX 8 selects the $Q$ output of the flip-flop (assuming that the $S$ and $R$ inputs are 0 ).
15. (a) The macrocell is configured for registered logic because the $D_{1}$
input of MUX 8 is selected, allowing the flip-flop output to pass through.
(b) The GCKI clock is applied to the flip-flop because the $D_{1}$ input of MUX 3 and the $D_{1}$ input of MUX 5 are selected.
(c) The OR gate output is applied to the XOR which is set for inversion by MUX 1. The output of the XOR is selected by MUX 2 and a 0 is applied to the $D / T$ input of the flip-flop.
(d) The output of MUX 8 is a 0 because MUX 8 selects the $Q$ output of the flip-flop (assuming that the $S$ and $R$ inputs are 0 ).

## Section 11-5 Programmable Logic: FPGAs

16. An FPGA typically consists of configurable logic blocks (CLBs). Each CLB is made up of a number of logic modules with a local interconnect. Each logic module typically consists of a look-up table (LUT) and associated logic. Global column and row interconnects are used to connect the CLBs to I/Os as well as each other.
17. SOP output $=\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B \bar{C}$
18. See Figure 11-3.

Section 11
19. An ALM C register logic
20.

The mode Arithmetic, arru srratcu afrcrmely.
21. See Figure 11-4.


FIGURE 11-
22. $\left(A_{4} A_{3} \bar{A}_{2} A_{1}+\bar{A}_{4} \bar{A}_{3} \bar{A}_{2} A_{1}\right) A_{0}+\left(\bar{A}_{5} A_{3} A_{2} A_{1}+A_{5} \bar{A}_{3} A_{2} \bar{A}_{1}+A_{5} A_{3} A_{2} \bar{A}_{1}\right) A_{0}$

$$
=A_{4} A_{3} \bar{A}_{2} A_{1} A_{0}+\bar{A}_{4} \bar{A}_{3} \bar{A}_{2} A_{1} A_{0}+\bar{A}_{5} A_{3} A_{2} A_{1} \bar{A}_{0}+A_{5} \bar{A}_{3} A_{2} \bar{A}_{1} \bar{A}_{0}+A_{5} A_{3} A_{2} \bar{A}_{1} \bar{A}_{0}
$$

## Section 11-7 Xilinx FPGAs

23. See Figure 11-5.

24. 


25.

http://ebook29.blogspot.com

FIGURE 11-7
26. Three slices are required. See Figure 11-8.


FIGURE 11-8

(a)

(b)
28. $X=\bar{A} B C D+A \bar{B} C D+A B \bar{C} D+A B C \bar{D}+A B C D+\bar{A} \bar{B} \bar{C} \bar{D}$ $=A B D+A C D+A B C+B C D+\bar{A} \bar{B} \bar{C} \bar{D}$

See Figure 11-10.
29. See Figure 11

30. $X=\bar{A} B C \bar{D}+A \bar{B} \bar{C} D+A B C D+A \bar{B} C \bar{D}+\bar{A} B \bar{C} D$. See Figure 11-12.


Section
31. The Shr gh the MUX, and are clocked into Capture register A on the leading edge of the clock pulse. From the output of Capture register A, the data go through the upper MUX and are clock into Capture register B on the trailing edge of the clock pulse.
32. $P D I / O=0$ and $O E=1$. The data from the internal programmable logic pass through the selected MUX and through the output buffer to the pin.
33. $\mathrm{PDI} / \mathrm{O}=0$ and $\mathrm{OE}=0$. The data are applied to the input pin and go through the selected MUX to the internal programmable logic.
34. $\operatorname{SHIFT}=1, \mathrm{PDI} / O=1$, and $O E=0$. Data are applied to $\operatorname{SDI}$, go through the MUX, and are clocked into Capture register A on the leading edge of the clock pulse. From the output of Capture register A, the data go through the upper MUX and are clocked into Capture register $B$ on the trailing edge of the clock pulse. A pulse on the UPDATE input clocks the data into Update register B. The data on the output of Capture Register B go through the MUX to the internal programmable logic. The data also appear on the SDO.

## Section 11-10 Troubleshooting

35. 000011001010001111011 shifted from TDI to TDO, left-most bit first. The bold-faced code will appear on the logic inputs in the sequence shown.
```
    0000011001010001111011
```

    1000011001010001111011
    3000011001010001111011
    6000011001010001111011
    12000011001010001111011
    9000011001010001111011
    2000011001010001111011
    5000011001010001111011
    10000011001010001111011
    4000011001010001111011
    8000011001010001111011
    1000011001010001111011
    3000011001010001111011
    7000011001010001111011
    15000011001010001111011
    14000011001010001111011
    13000011001010001111011
    11000011001010001111011
    
## Digital System Application

36. 11 inverters can be eliminated. Only four are needed to produce the complements of $A, B, C$, and $D$.

There are three AND gates that produce the product term $\bar{A} \bar{C}$. Two can be eliminated.

There are three AND gates that produce the product term $\bar{A} B$. Two can be eliminated.

There are two AND gates that produce the product term $B \bar{C}$. One can be eliminated.

There are two AND gates that produce the product term $\bar{B} C$. One can be eliminated.

There are two AND gates that produce the product term $\bar{A} \bar{B}$. One can be eliminated.

7 AND gates can be eliminated.
37. The D input to the logic is faulty or not connected. See Figure 1113.


## CHAPTER 12

## INTRODUCTION TO COMPUTERS

## Section 12-1 The Basic Computer

1. The basic elements of a computer are central processing unit (CPU), memory unit, and input/output ports.
2. Two types of software are system and application.
3. A bus is a set of physical connections over which data and other information is transferred in a computer according to a standard set of specifications.
4. A port is a physical interface on a computer through which data is passed to and from peripherals.

## Section 12-2 Microprocessors

5. The basic elements of a microprocessor are arithmetic logic unit (ALU), instruction decoder, control unit, and register array.
6. A microprocessor performs arithmetic operations, logic operations, data movements, and decision functions.
7. The three microprocessor buses are address, data, and control.
8. Groups of Pentium instructions are: data transfer, arithmetic and logic, bit manipulation, loops and jumps, strings, subroutines and interrupts, and control.

## Section 12-3 A Specific Microprocessor Family

9. A microprocessor repeatedly cycles through fetch, decode, execute.

10 Pipelining is the process of fetching and executing at the same time so that more than one instruction can be processed simultaneously.
11. The six segment registers of the 80386 and above are:

CS, DS, SS, ES, FS, GS
12. The code segment (CS) register contains $0 F 05$ and the instruction pointer contains 0100. The physical address is

```
0F050 + 0100 = 0F150
```

13. AH and AL are 8-bit registers and represent the high and low part of the 16 -bit $A X$ register. The EAX is a 32 -bit register which includes the AX register as the lower 16 bits.
14. (a) A flag is a bit stored in the flag register that is set or cleared by the processor.
(b) A flag indicates a status or a control condition. A status flag is an indicator of a condition after an arithmetic or logic operation. A control flag alters processor operations under certain conditions.
15. Instruction pairing allows two instructions to execute at the same time.

## Section 12-4 Computer Programming

16. An assembler is a program that translates mnemonics and operands into machine code.
17. The flowchart in Figure 12-1 shows the process for adding numbers from one to ten and saving the results in a memory location named TOTAL.

18. The flowchart in Figure 12-2 shows how you can count the number of bytes in a string and place the count in a memory location called COUNT. The string starts at a location named START and uses 20H (space) to indicate the end.
19. When the instru pointed to by the

20. translates a procs machine code.

## Section 12-5 Interrupts

21. In a polled I/O, the CPU polls each device in turn to see if it needs service; in an interrupt-driven system, the peripheral device signals the CPU when it requires service.
22. Vectoring is when the PIC provides a pointer to a service routine.
23. A software interrupt is a program instruction that invokes an interrupt service routine.

## Section 12-6 Direct Memory Access (DMA)

24. In a DMA operation, the DMA controller is given control by the CPU and allows data to flow between memory and a peripheral directly, bypassing the CPU.
25. The CPU is bypassed in DMA.

Section 12-7 Internal Interfacing
26. See Figure 12-3.


FIGURE 12-
27. See Figure 12-4.

28. See Figure 12-5.


Secti
29.
the processor. The PCI bus is used for expansion devices and is connected to the local bus through a bus controller.
30. Plug-and-Play refers to self-configuring hardware that can be installed into and used in a computer system without the need for manual installation of jumpers or setting of switches.
31. The PCI bus is a 33 or 66 MHz , 32 - or 64 -bit, plug-and-play compatible expansion bus. ISA is an 8 - or 16 -bit 8.33 MHz expansion bus. PCI supports 3.3 V supplies while ISA supports 5 V and 12 V supplies.
32. A shorter RS-232C cable can support faster communication rates.
33. DCE stands for data communications equipment, such as a modem. DTE stands for data terminal equipment, such as a computer. Both acronyms are associated with the RS-232/EIA-232 standard.
34. A USB cable consists of a power line, ground line, and two differential data lines.
35. Since there are eight instruments already on the bus and the limit is fourteen, six more instruments can be connected.
36. Three data bytes are transferred because the NDAC line goes HIGH three times, each time indicating that a data byte is accepted.
37. A controller is sending data to two listeners. The first two bytes of data (3F and 41) go to the listener with address 001A. The second two bytes go to the listener with address 001B. The handshake signals (DAV, NRFD, and NDAC) indicate that the data transfer is successful. See Figure 12-6.


## FIGURE 12-

38. If a talker sends a data byte to a listener on a GPIB system and a DTE sends a data byte to a DCE on an RS-232C system, the RS-232C system will receive the data first. This is because GPIB requires significantly more setup and handshaking than RS-232C.

## CHAPTER 13

## INTRODUCTION TO DIGITAL SIGNAL PROCESSING

## Section 13-1 Digital Signal Processing Basics

1. The purpose of analog-to-digital conversion is to change an analog signal into a sequence of digital codes that represent the amplitude of the analog signal with respect to time.
2. See Figure 13-1.


FIGURE 13-
of digital codes into an analog signal represented by the digital codes.

Section 13-2 Converting Analog Signals to Digital
4. See Figure 13-2.

5. See Figure 13-3.
6. 11,11
7. 1000,

8. See Figure 13-4.

9. See Figure 13-5.

Section 13-3

10. $\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{2 \mathrm{~V}}{10 \mathrm{mV}}=200$
11.

$$
\begin{gathered}
\frac{V_{\mathrm{OUT}}}{V_{\mathrm{IN}}}=\frac{R_{\mathrm{F}}}{R_{\mathrm{IN}}} \\
R_{\mathrm{F}}=R_{\mathrm{in}}\left(\frac{V_{\mathrm{OUT}}}{V_{\mathrm{IN}}}\right)=1 \mathrm{k} \Omega(330)=330 \mathrm{k} \Omega
\end{gathered}
$$

12. $001,010,011,101,110,111,111,111,111,110,101,101,110,110$, 110, 101, 100, 011, 010, 001.

See Figure 13-6.
13.


$t(\mu \mathrm{~s})$

FIGURE 13-
14.

| SAR | Comment |  |
| :--- | :--- | :--- |
| 11 | Less than $V_{\text {in }}$. | Keep |
| 11 | the 1. |  |
| 11 | Less than $V_{\text {in }}$. Keep |  |
|  | the 1. |  |
| Less than $V_{\text {in }}$. | Keep |  |
| the 1. |  |  |

Conversion never terminates since 2 bits cannot represent the input.
15.

| SAR | Comment |
| :--- | :--- |
| 1000 | Greater than $V_{\text {in }} \cdot$ Reset |
| 0100 | MSB. |
| 0110 | Less than $V_{\text {in }} . \quad$ Keep the 1. <br> Equal to $V_{\text {in }}$. <br> (final state) |

16. See Figure 13-8.


Section 13-4 The Digital Signal Processor (DSP)
17. 2000 MIPS $\times \frac{32 \text { bit/instruction }}{8 \text { bits/byte }}$
$=2000$ MIPS $\times 4$ bytes/instruction
$=8000$ Mbytes $/ \mathrm{s}$
18. $\frac{400 \mathrm{Mbits} / \mathrm{s}}{32 \mathrm{bits} / \text { instruction }}=12.5 \mathrm{million}$ instructions $/ \mathrm{s}$
19. 1000 MFLOPS $=1,000,000,000$ floating-point operations/s
20. 1. Program address generate (PG). The program address is generated by the CPU.
2. Program address send (PS). The program address is sent to the memory.
3. Program access ready wait (PW). A memory read operation occurs.
4. Program fetch packet receive (PR). The CPU receives the packet of instructions.
21. 1. Instruction dispatch (DP) : Instruction packets are split into execute packets and assigned
to functional units;
2. Instruction decode (DC): Instructions are decoded.

Section 13-5 Digital-to-Analog Conversion Methods
22. $R_{0}=10 \mathrm{k} \Omega$

$$
R_{1}=\frac{R_{0}}{2}=\frac{10 \mathrm{k} \Omega}{2}=5 \mathrm{k} \Omega
$$

$$
R_{2}=\frac{R_{0}}{4}=\frac{10 \mathrm{k} \Omega}{4}=2.5 \mathrm{k} \Omega
$$

$$
R_{3}=\frac{R_{0}}{8}=\frac{10 \mathrm{k} \Omega}{8}=1.25 \mathrm{k} \Omega
$$

23. See Figure 13-9.

24. (a) $\left(\frac{1}{\left(2^{3}-1\right)}\right) 100=14.3 \%$
(b) $\left(\frac{1}{2^{10}-1}\right) 100=0.098 \%$
(c) $\left(\frac{1}{2^{18}-1}\right) 100=0.00038 \%$
25. See Figure 13-11.

26. See Figure 13-13.


## CHAPTER 14

## INTEGRATED CIRCUIT TECHNOLOGIES

## Section 14-1 Basic Operational Characteristics and Parameters

1. No, because the $V_{\mathrm{OH}(\min )}$ is less than the $V_{\mathrm{IH}(\text { min })}$. The gate may interpret 2.2 V as a LOW.
2. Yes, they are compatible because the $V_{\text {OL (max) }}$ is less than the $V_{\mathrm{IL}(\max )}$.
3. $V_{\mathrm{NH}}=V_{\mathrm{OH}(\text { min })}-V_{\mathrm{TH}(\text { min })}=2.4 \mathrm{~V}-2.25 \mathrm{~V}=0.15 \mathrm{~V}$
$V_{\mathrm{NL}}=V_{\mathrm{IL}(\max )}-V_{\text {OL(max) }}=0.65 \mathrm{~V}-0.4 \mathrm{~V}=0.25 \mathrm{~V}$
4. The maximum amplitudes equal the noise margins of 0.15 V and 0.25 V .
5. Gate A: $\quad V_{\mathrm{NH}}=2.4 \mathrm{~V}-2 \mathrm{~V}=0.4 \mathrm{~V}$

$$
V_{\mathrm{NL}}=0.8 \mathrm{~V}-0.4 \mathrm{~V}=0.4 \mathrm{~V}
$$

Gate B: $\quad V_{\mathrm{NH}}=3.5 \mathrm{~V}-2.5 \mathrm{~V}=1 \mathrm{~V}$
$V_{\mathrm{NL}}=0.6 \mathrm{~V}-0.2 \mathrm{~V}=0.4 \mathrm{~V}$
Gate C: $\quad V_{\mathrm{NH}}=4.2 \mathrm{~V}-3.2 \mathrm{~V}=1 \mathrm{~V}$
$V_{\mathrm{NL}}=0.8 \mathrm{~V}-0.2 \mathrm{~V}=0.6 \mathrm{~V}$
Gate C has the highest noise margins.
6. $\quad P_{\mathrm{D}(\text { Low })}=(5 \mathrm{~V})(2 \mathrm{~mA})=10 \mathrm{~mW}$
$P_{\mathrm{D}(\mathrm{HIGH})}^{\mathrm{D} \text { (LOW) }}=(5 \mathrm{~V})(3.5 \mathrm{~mA})=17.5 \mathrm{~mW}$
$P_{\mathrm{D}(\text { avg })}=\frac{P_{\mathrm{D}(\mathrm{LOW})}+P_{\mathrm{D}(\mathrm{HIGH})}}{2}=\frac{27.5 \mathrm{~mW}}{2}=13.75 \mathrm{~mW}$
7. The pulse goes through three gates in the shortest path. $3 \times 4 \mathrm{~ns}=12 \mathrm{~ns}$
8. $t_{\mathrm{p} \text { (avg) }}=\frac{t_{\mathrm{PLH}}+t_{\mathrm{PHL}}}{2}=\frac{2 \mathrm{~ns}+3 \mathrm{~ns}}{2}=2.5 \mathrm{~ns}$
9. Gate A average propagation delay:

$$
\frac{t_{\mathrm{PLH}}+t_{\mathrm{PHL}}}{2}=\frac{1 \mathrm{~ns}+1.2 \mathrm{~ns}}{2}=1.1 \mathrm{~ns}
$$

Speed/Power product $=(1.1 \mathrm{~ns})(15 \mathrm{~mW})=16.5 \mathrm{pJ}$
Gate B average propagation delay:

$$
\frac{5 \mathrm{~ns}+4 \mathrm{~ns}}{2}=4.5 \mathrm{~ns}
$$

Speed/Power product $=(4.5 \mathrm{~ns})(8 \mathrm{~mW})=36 \mathrm{pJ}$
Gate C average propagation delay: $\quad \frac{10 \mathrm{~ns}+10 \mathrm{~ns}}{2}=10 \mathrm{~ns}$
Speed/Power product $=(10 \mathrm{~ns})(0.5 \mathrm{~mW})=$
5 pJ

Gate C has the best speed/power product.
10. Gate A can be operated at the highest frequency because it has the shortest propagation delay.
11. G2 is overloaded because it has 12 unit loads.
12. The network in (a) can operate at the highest frequency because the driving gate has fewer loads.

## Section 14-2 CMOS Circuits

13. 

(a) ON
(b) OFF
(c) OFF
(d) ON
14. Unused inputs should be connected as follows:

Negative-OR gate (NAND) to $V_{\text {cc }}$
NAND gate to $+V_{\text {cc }}$
NOR gate to ground
15. See Figure 14-1 for another possible approach in addition to circuit given in text answers.


FIGURE 15-1
16. (a) ON: junction.
(b) OFF: insufficient voltage on base to forward-bias the baseemitter junction.
(c) OFF: emitter is more positive than the base which reverse-
biases the base-emitter
junction.
(d) OFF: base and emitter at same voltage. No forward bias.
17. See Figure 14-2.


FIGURE 14-
18. Connect a $1 \mathrm{k} \Omega$ pull-up resistor to the unused inputs of the two NAND gates. Connect the unused input of the NOR gate to ground. Connect a pull-up resistor to the open collector of the NOR gate (value depends on load).

Section 14-4 Practical Considerations in the Use of TTL
19. See Figure 14-3.

(a)

(b)

(c)

FIGURE 15-3
20. (a) The driving gate output is HIGH, it is sourcing 3 unit loads. $I_{\mathrm{T}}=3(40 \mu \mathrm{~A})=120 \mu \mathrm{~A}$
(b) The driving gate output is LOW, it is sinking current from 2 unit loads.
$I_{\mathrm{T}}=2(-1.6 \mathrm{~mA})=-3.2 \mathrm{~mA}$
(c) G1 output is HIGH, it is sourcing 6 unit loads.
$I_{\mathrm{T}}=\sigma(40 \mu \mathrm{~A})=240 \mu \mathrm{~A}$
G2 output is LOW, it is sinking current from 2 unit loads.
$I_{\mathrm{T}}=2(-1.6 \mathrm{~mA})=-3.2 \mathrm{~mA}$
G3 output is HIGH, it is sourcing 2 unit loads.
$I_{\mathrm{T}}=2(40 \mu \mathrm{~A})=80 \mu \mathrm{~A}$
21. See Figure 14-4. Pull-up resistors of second-level inverters are not shown.

22.
(a) $\quad X=A B \bar{C} \bar{D}$
(b) $\quad X=(\overline{A B C})(\overline{D E})(\overline{F G})$
(c) $\quad x=(\overline{A+B)}(\overline{C+D)}(\overline{E+F})(\overline{G+H})=\bar{A} \bar{B} \bar{C} \bar{D} \bar{E} \bar{F} \bar{G} \bar{H}$
23. Worst case for determining minimum $R_{p}$ is when only one gate is sinking all of the current ( 40 mA maximum).

For 10 UL: $\quad I_{\mathrm{L}}=10(1.6 \mathrm{~mA})=16 \mathrm{~mA}$
For each gate: $\quad I_{\mathrm{RP}(\max )}=I_{\mathrm{OL}(\max )}-16 \mathrm{~mA}=40 \mathrm{~mA}-16 \mathrm{~mA}=24 \mathrm{~mA}$

$$
\begin{gathered}
V_{\mathrm{Rp}}=5 \mathrm{~V}-0.25 \mathrm{~V}=4.75 \mathrm{~V} \\
R_{\mathrm{p}(\min )}=\frac{V_{\mathrm{Rp}}}{I_{\mathrm{Rp}(\max )}}=\frac{4.75 \mathrm{~V}}{24 \mathrm{~mA}}=198 \Omega \\
R_{\mathrm{p}(\min )} \text { for }(\mathrm{a}), \quad(\mathrm{b}), \text { and }(\mathrm{c}) \text { is the same value. }
\end{gathered}
$$

24. See Figure 14-5.

## Section 14-5 Com


25. F series: $\operatorname{SPP}=3.3 \mathrm{~ns} \times 6 \mathrm{~mW}=19.8 \mathrm{pJ}$

LS series: $S P P=10 \mathrm{~ns} \times 2.2 \mathrm{~mW}=22 \mathrm{pJ}$ ALS series: $S P P=7 \mathrm{~ns} \times 1.4 \mathrm{~mW}=9.8 \mathrm{pJ}$ ABT series: $S P P=3.2 \mathrm{~ns} \times 17 \mu \mathrm{~W}=0.0544 \mathrm{pJ}$ HC series: $S P P=7 \mathrm{~ns} \times 2.75 \mu \mathrm{~W}=0.01925 \mathrm{pJ}$ AC series: $S P P=5 \mathrm{~ns} \times 0.55 \mu \mathrm{~W}=0.00275 \mathrm{pJ}$ AHC series: $S P P=3.7 \mathrm{~ns} \times 2.75 \mu \mathrm{~W}=0.010175 \mathrm{pJ}$ LV series: $S P P=9 \mathrm{~ns} \times 1.6 \mu \mathrm{~W}=0.0144 \mathrm{pJ}$ LVC series: $S P P=4.3 \mathrm{~ns} \quad 0.8 \mu \mathrm{~W}=0.00344 \mathrm{pJ}$

ALVC series: $S P P=3 \mathrm{~ns} \times 0.8 \mu \mathrm{~W}=0.0024 \mathrm{pJ}$
ALVC has the best (lowest value) speed-power product. It is, however, misleading to compare CMOS and TTL in terms of SPP because the power of CMOS goes up with frequency.
26. (a) ALVC
(b) AHC
(c) AC
(d) ALVC
27. (a) $A$ and $B$ to $X: 3(3.3 \mathrm{~ns})=9.9 \mathrm{~ns}$
$C$ and $D$ to $X: 2(3.3 \mathrm{~ns})=6.6 \mathrm{~ns}$
(b) A to $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3: 2(7 \mathrm{~ns})=14 \mathrm{~ns}$

B to X1: 7 ns
C to X2: 7 ns
D to X3: 7 ns
(c) $A, B$ to $X: 3(3.7 \mathrm{~ns})=11.1 \mathrm{~ns}$ C, D, to X: $2(3.7 \mathrm{~ns})=7.4 \mathrm{~ns}$
28. (a) HC has an $f_{\max }=50 \mathrm{MHz}$

$$
f_{\text {clock }}=\frac{1}{50 \mathrm{~ns}}=20 \mathrm{MHz}
$$

(b) LS has an $f_{\text {max }}=33 \mathrm{MHz}$

$$
f_{\text {clock }}=\frac{1}{60 \mathrm{~ns}}=16.7 \mathrm{MHz}
$$

(c) AHC has an $f_{\max }=170 \mathrm{MHz}$
$f_{\text {clock }}=\frac{1}{4 \mathrm{~ns}}=250 \mathrm{MHz}$
Since $f_{\text {clock }}>f_{\max }$ for the AHC flip-flop, the output will be erratic.

## Section 14-6 Emitter-Coupled Logic (ECL) Circuits

29. ECL operates with nonsaturated BJTs whereas TTL transistors saturate when turned on.
30. (a) Lowest propagation delay - ECL
(b) Lowest power - HCMOS
(c) Lowest speed/power product - HCMOS

[^0]:    See Figure 8-11.

[^1]:    See Figure 8-12.

